
The Law Enforcement and Forensic
Examiner’s Introduction to Linux

A Comprehensive Practitioner’s Guide to Linux
as a Digital Forensics Platform

Version 4.97
August 2023

Barry J. Grundy

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

Contents

Legalities 8

Acknowledgements 8

Foreword 10

A word about the GNU in "GNU/Linux" 11

Why Learn Linux? 12

Where are all the GUI Tools? 13

The Hands-on Exercises 13

Conventions Used in this Document 14

1 Installation 15

1.1 Distributions . 16

1.2 SLACKWARE and Using this Guide . 17

1.3 Installation Methods . 18

1.4 Slackware Installation Notes . 18

1.5 System Users . 20

1.5.1 Adding a Normal User . 21

1.5.2 The Super User [root] . 21

1.6 Desktop Environment . 23

1.7 The Linux Kernel . 23

1.8 Kernel and Hardware Interaction . 24

1.8.1 Hardware Configuration . 24

1

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

1.8.2 Kernel Modules . 25

1.8.3 Hotplug devices and UDEV . 28

2 Linux Disks, Partitions, and the File System 29

2.1 Disks . 29

2.2 Device Node Assignment - Looking Closer 33

2.3 The File System . 35

2.4 Mounting External File Systems . 38

2.4.1 The mount Command . 38

2.4.2 The File System Table (/etc/fstab) 42

2.4.3 Userspace Mounting . 42

3 Basic Linux Commands 47

3.1 Very Basic Navigation . 47

3.1.1 Additional Useful Commands . 49

3.2 File Permissions . 51

3.3 Pipes and Redirection . 53

3.4 File Attributes . 55

3.5 Command Line Math . 57

3.5.1 bc - the Basic Calculator . 57

3.5.2 Bash Shell - Arithmetic Expansion 59

3.6 Bash ’globbing’ . 60

3.7 Command Review and Hints . 60

4 Editing with Vi 61

4.1 The Joy that is vi . 61

2

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

4.2 The vimtutor Tutorial . 61

4.3 vi Command Summary . 62

5 The Linux Boot Sequence (Simplified) 64

5.1 Init vs. Systemd . 64

5.2 Booting the Kernel . 64

5.3 System Initialization . 66

5.4 Runlevel . 66

5.5 Global Startup Scripts . 67

5.6 Service Startup Scripts . 68

5.7 Bash . 69

5.7.1 Consistent login and non-login shell behavior 70

6 Linux Network Basics 73

6.1 Network Interfaces . 73

6.1.1 Ethernet Adapter [ethX] . 74

6.1.2 Wireless Adapter [wlanX] . 74

6.1.3 Loopback Interface [lo] . 74

6.1.4 Persistent Interface Naming . 74

6.2 Network Configuration . 75

6.2.1 Initial Network Configuration . 75

6.3 Finding Yourself on the Network . 78

6.3.1 What is my IP? . 78

6.4 Reviewing Network Connections and Ports 81

3

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

7 Configuring a Forensic Workstation 84

7.1 Securing the Workstation . 84

7.1.1 Configuring Startup Services . 85

7.1.2 Host Based Access Control . 87

7.1.3 Host Based Firewall with iptables 90

7.2 Updating the Operating System . 94

7.2.1 Slackware’s pkgtools . 94

7.2.2 slackpkg for automated updates . 95

7.3 Installing and Updating "External" Software 97

7.3.1 Compiling From Source . 97

7.3.2 Using Distribution Packages . 99

7.3.3 Building Packages with SlackBuilds 100

7.3.4 Using the automated package tool sbotools 104

8 Linux and Evidence Handling 110

8.1 Evidence Acquisition . 110

8.2 Analysis Organization . 111

8.3 Write Blocking . 113

8.4 Examining Physical Media Information . 114

8.5 Hashing Media . 119

8.6 Collecting a Forensic Image with dd . 120

8.6.1 dd and Splitting Images . 123

8.7 Alternative Imaging Tools . 126

8.7.1 dc3dd . 127

8.7.2 libewf and ewfacquire . 134

4

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

8.7.3 Media Errors - ddrescue . 144

8.8 Imaging Over the Wire . 153

8.8.1 Over the wire - dd . 155

8.8.2 Over the Wire - dc3dd . 157

8.8.3 Over the Wire - ewfacquirestream . 159

8.9 Compression - Local and Over the Wire . 162

8.9.1 Compression on the Fly with dd . 162

8.10 Preparing a disk for the Suspect Image - Wiping 167

8.11 Final Words on Imaging . 170

8.12 Mounting Evidence . 170

8.12.1 Structure of the Image . 170

8.12.2 Identifying File Systems . 172

8.12.3 The Loop Device . 174

8.12.4 Loop option to the mount command 174

8.12.5 losetup . 175

8.12.6 Mounting Full Disk Images with losetup 177

8.12.7 Mounting Multi Partition Images with losetup -P 180

8.12.8 Mounting Split Image Files with affuse 182

8.12.9 Mounting EWF files with ewfmount 187

9 Basic Analysis 190

9.1 Anti Virus - Scanning the Evidence with clamav 190

9.2 Basic Data Review on the Command Line 194

9.3 Making a List of File Types . 201

9.4 Viewing Files . 202

5

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

9.5 Searching All Areas of the Forensic Image for Text 206

10 Advanced (Beginner) Forensics 210

10.1 Manipulating and Parsing Files . 210

10.2 Fun with dd . 217

10.2.1 Data Carving with dd . 218

10.2.2 Carving Partitions with dd . 221

10.2.3 Reconstructing a Subject File System (Linux) 225

11 Advanced Analysis Tools 229

11.1 The Layer Approach to Analysis . 230

11.2 The Sleuth Kit . 232

11.2.1 Sleuth Kit Installation . 234

11.3 Sleuth Kit Exercises . 235

11.3.1 Sleuth Kit Exercise 1A: Deleted File Identification and Recovery (ext2) 236

11.3.2 Sleuth Kit Exercise 1B: Deleted File Identification and Recovery (ext4) 246

11.3.3 Sleuth Kit Exercise 2A: Physical String Search & Allocation Status
(ext2) . 251

11.3.4 Sleuth Kit Exercise 2B: Physical String Search & Allocation Status
(ext4) . 258

11.3.5 Sleuth Kit Exercise 3: Unallocated Extraction & Examination 261

11.3.6 SleuthKit Exercise 4: NTFS Examination - File Analysis 267

11.3.7 Sleuth Kit Exercise 5: NTFS Examination of ADS 272

11.3.8 Sleuth Kit Exercise 6: Physical String Search & Allocation Status
(NTFS) . 276

11.4 bulk_extractor - comprehensive searching 281

11.5 Physical Carving . 289

6

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

11.5.1 scalpel . 289

11.5.2 photorec . 297

11.5.3 Comparing and De-duplicating Carve Output 304

11.6 Application Analysis . 307

11.6.1 Registry Parsing Exercise 1: UserAssist 308

11.6.2 Registry Parsing Exercise 2: SAM and Accounts 314

11.6.3 Application Analysis: prefetch . 317

12 Basic Network Investigation Tools 321

12.0.1 IP Address Lookup . 321

12.0.2 Mail Exchange Lookup . 323

12.1 Whois data . 324

12.2 MAC Address Lookup . 325

13 Integrating Linux with Your Work 327

14 Conclusion 332

15 Linux Support 333

15.1 Places to go for Support . 333

List of Figures 333

List of Command Examples 336

7

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

Legalities

All trademarks are the property of their respective owners.

© 1998-2023 Barry J. Grundy (bgrundy@linuxleo.com): This document may be redis-
tributed, in its entirety, including the whole of this copyright notice, without additional
consent if the redistributor receives no remuneration and if the redistributor uses these ma-
terials to assist and/or train members of Law Enforcement, Security / Incident Response
professionals, or students of related professions. Otherwise, these materials may not be
redistributed without the express written consent of the author, Barry J. Grundy.

Acknowledgements

As always, there is no possible way I can thank everyone that deserves it. Over the years
I have learned so much from so many. A blog post here, a returned email there. Help on
IRC, online forums, and colleagues in the office. The contributions I receive from others in
the field that take time out of their own busy days to assist me in growing as an investigator
and forensic examiner, are simply too numerous to catalog. My heartfelt thanks to all.

The list of colleagues that have contributed over the many years has grown. I remain grateful
to all that have given their time in reviewing and providing valuable feedback, and in some
cases, simple encouragement to all versions of this guide over the years. My continued thanks
to Cory Altheide, Brian Carrier, Christopher Cooper, Nick Furneaux, John Garris, Robert-
Jan Mora, and Jesse Kornblum for helping me lay the foundation for this guide. And for
more recent assistance, I’d like to thank Jacques Boucher, Tobin Craig, Simson Garfinkel,
Andreas Guldstrand, Bill Norton, Paul Stephens, Danny Werb, and Robby Workman.

Thanks to Dr. Nhien An Le Khac for providing the motivation to continually update this
guide over the past couple of years.

My continued thanks to the Linux Kernel, various distribution, and software development
teams for their hard work in providing us with an operating system and utilities that are
robust and controllable. What horrors would I be living without their dedication?

The LinuxLEO logo was designed by Laura Etter (WillowWispDesign@yahoo.com).

And special thanks to Bárður Christiansen for providing some very detailed editing in this
most recent version. An excellent eye for detail I all too often missed.

Finally, I cannot go without thanking my wife Jo and my sons Patrick and Tommy for the
seemingly endless patience as the work was underway.

8

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

Foreword

The first version of this guide was posted to the Ohio Peace Officer’s Training Academy FTP
site back in 1999. Since then we’ve seen significant changes to our profession, and a massive
growth in the development of software and techniques used to uncover evidence from an ever
expanding universe of devices. The purpose of this document, however, remains unchanged.
Here we look to provide an easy to follow and accessible guide for forensic examiners across
the full spectrum of this forensic discipline; law enforcement officers, incident responders,
and all computer specialists responsible for the investigation of digital evidence. This guide
continues to provide an introductory overview of the GNU/Linux (Linux) operating system
as a forensic platform.

Above all, this remains a beginner’s guide. An introduction. It is not meant to be a full
course on conducting forensic examinations. This document is about the tools and the
concepts used to employ them. Introducing them, providing simple guidance on using them,
and some ideas on how they can be integrated into a modern digital forensics laboratory or
investigative process. This is also a hands on guide. It’s the best way to learn and we’ll
cover both basic GNU/Linux utilities and specialized software through short exercises.

The content is meant to be "beginner" level, but as the computer forensic community evolves
and the subject matter widens and becomes more mainstream, the definition of "beginner"
level material starts to blur. This guide makes an effort to keep the material as basic as
possible without omitting those subjects seen as fundamental to the proper understanding
of Linux and its potential as a digital forensic platform. If you’ve been doing forensic
examinations for five or ten years, but never delved into Linux, then this is for you. If you’re
a student at University and you are interested in how forensic tools are employed, but cannot
afford thousands of dollars in licenses...then this is for you.

However, this is by no means meant to be the definitive "how-to" on forensic methods using
Linux. Rather, it is a (somewhat extended) starting point for those who are interested in
pursuing the self-education needed to become proficient in the use of Linux as an investigative
tool. Not all of the commands offered here will work in all situations, but by describing
the basic commands available to an investigator I hope to "start the ball rolling". I will
present the commands, the reader needs to follow-up on the more advanced options and
uses. Knowing how these commands work is every bit as important as knowing what to type
at the prompt. If you are even an intermediate Linux user, then much of what is contained
in these pages will be review. Still, I hope you find some of it useful.

GNU/Linux is a constantly evolving operating system. Distributions come and go, and
there are now a number of "stand out" Linux flavors that are commonly used. In addition
to balancing the beginner nature of the content of this guide with the advancing standards
in forensic education, I also find myself trying to balance the level of detail required to
actually teach useful tasks with the distribution specific nature of many of the commands
and configurations used.

9

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

As we will discuss in further detail later in this guide, many of the details are specific to one
flavor of Linux. In most cases, the commands are quite portable and will work on most any
system. In other cases (package management and configuration editing, etc.) you may find
that you need to do some research to determine what needs to be done on your platform
of choice. The determination to provide specific details on actually configuring a specific
system came about through overwhelming request for guidance. The decision to use my
Linux distribution of choice for forensics as an example is personal.

Over the years I have heard from colleagues that have tried Linux by installing it, and
then proceeded to sit back and wonder "what next?". I have also entertained a number of
requests and suggestions for a more expansive exploration of tools and utilities available to
Linux for forensic analysis at the application level. More recently, there have been numerous
requests for configuration guidelines for a baseline Linux workstation. You have a copy of
this introduction. Now download the exercises and drive on. This is only the start of your
reading. Utilized correctly, this guide should prompt many more questions and kick start
your learning. In the years since this document was first released a number of excellent
books with far more detail have cropped up covering open source tools and Linux forensics.
I still like to think this guide will be useful for some.

As always, I am open to suggestions and critique. My contact information can be found at
https://LinuxLEO.com. If you have ideas, questions, or comments, please don’t hesitate to
email me. Any feedback is welcome.

This document is occasionally updated. Check for newer versions (numbered on the front
page) at the official site:

https://LinuxLEO.com

10

https://LinuxLEO.com
https://LinuxLEO.com

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

A word about the GNU in "GNU/Linux"

When we talk about the "Linux" operating system, we are actually talking about the
GNU/Linux operating system (OS). Linux itself is not an OS. It is just a kernel. The
OS is actually a combination of the Linux kernel and the GNU utilities that allow us and
our hardware to interact with the kernel. Which is why the proper name for the OS is
"GNU/Linux". We (incorrectly) call it "Linux" for convenience.

Why Learn Linux?

One common question is: "why should I use Linux when I already have [insert Windows
GUI forensic tool here]?" There are many reasons why Linux is quickly gaining ground as a
forensic platform. I’m hoping this document will illustrate some of those attributes.

In short, even if you are a seasoned mainstream operating system user, be it Mac or Windows,
Linux provide an alternative and entirely unique way of approaching your forensic workflow.
Not only is the environment different from what you may be accustomed to, but the way
you work can also be a complete departure from what you are used to - if you have the
patience and courage to allow it to be different. In many cases, with some up-front effort,
your workflow can be exponentially more efficient.

• Control - not just over your forensic software, but the whole OS and attached hardware.

• Flexibility - boot from a CD (to a complete OS), file system support, platform support,
etc.

• Power - A Linux distribution is (or can be) a forensic tool.

Another point to be made is that simply knowing how Linux works is becoming more and
more important. While many of the Windows based forensic packages in use today are fully
capable of examining Linux systems, the same cannot be said for the examiners.

As Linux becomes more and more popular, both in the commercial world and with desktop
users, the chance that an examiner will encounter a Linux system in a case becomes more
likely (especially in network investigations). Even if you elect to utilize a Windows forensic
tool to conduct your analysis, you must at least be familiar with the OS you are examining.
If you do not know what is normal, then how do you know what does not belong? This is
true on so many levels, from the actual contents of various directories to strange entries in
configuration files, all the way down to how files are stored. While this document is more
about Linux as a forensic tool rather than analysis of Linux, you can still learn a lot about
how the OS works by actually using it.

11

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

There is also the issue of cross-verification. A working knowledge of Linux and its forensic
utility can provide an examiner with alternative tools on an alternative platform. These
can be used as a method to verify the findings of other tools on other operating systems.
Many examiners have spent countless hours learning and using common industry standard
Microsoft Windows forensic tools. It would be unrealistic to think that reading this guide will
give an examiner the same level of confidence, sometimes built through years of experience,
as they have with their traditional tools of choice. What I can hope is that this guide will
provide enough information to give the examiner "another tool for the toolbox", whether
it’s imaging, recovering, or examining evidence. Linux as an alternative forensic platform
provides a perfect way to cross check your work and verify your results, even if it is not your
primary choice.

We also need to consider the usefulness of Linux in academic and research applications. The
open nature of Linux and the plethora of useful utilities included in a base system make
it an almost tailor made platform for basic digital forensics. This is especially true in an
academic environment where we find Linux provides a low cost solution to enable access
to imaging tools and file examination utilities that can be used to cover the foundations of
digital investigations using tools in an environment that supports multiple formats and data
types. For example, we can use the dd program for simple imaging and carving; grep to
locate and examine file system structures and text string artifacts, and the file command
again with xxd for signature identification and analysis. This provides us with much the same
set of simple tools needed to present the very basics of digital forensics while still teaching
Linux command line familiarity. Linux as a forensic platform can easily provide a primary
means for digital investigations education. And in fact, prior versions of this guide have been
referenced in many advanced degree and law enforcement programs that teach basic digital
forensics.

Where are all the GUI Tools?

As much as possible, the tools represented in this guide are callable from and require user
interaction through the command line environment. This is not simple sadism. It’s a matter
of actually learning Linux (and in some ways UNIX as a by-product). This point will be
made throughout this document, but the goal here is to introduce tools and how to interact
through the command line. Reliance on GUI tools is understandable and is not being wholly
disparaged here. If you are making the effort to read and follow along with this guide, then
an assumption is being made that you want to learn Linux and the power the command line
brings. There are two main points that we can focus on here:

The first is that Linux (and UNIX) find their foundation at the command line. Modern
Linux and UNIX implementations are still, at their hearts, driven by a system that is most
accessible from a command line interface. For this reason, knowing how to interact with
the command line provides examiners with the widest range of capabilities regardless of the
distribution or configuration of Linux encountered. Yes, this is about forensic tools and

12

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

utilities, but it’s also about becoming comfortable with Linux. It is for this reason that we
continue to learn a command line editor like vi and simple bit level copying tools like dd.
There is a very high probability that any Linux/UNIX system you come across will have
these tools.

The second point is that knowing and understanding the command line is, in and of itself,
a very powerful tool. Once you realize the power of command pipes and flow control (using
loops directly on the command line), you will find yourself able to power through problems
far faster than you previously thought. Learning the proper use and power of utilities like
awk, sed, and grep will open some powerful techniques for parsing structured logs and other
data sources. This guide should provide some basic understanding of how those can be used.
Once you understand and start to leverage this power, you will find yourself pining for a
command line and its utilities when one is not available.

Keep these points in mind as you go through the exercises here. Understand why and how
the tools work. Don’t just memorize the commands themselves. That would miss the point.

The Hands-on Exercises

As with previous versions of this guide, you will see some old (but still useful) exercises
remain. The output and tool usage are always refreshed to reflect the current versions of the
tools used. While somewhat aging, these exercises and the files used to present them remain
useful and have not been removed.

Exercises have also been added in more recent versions to cover application layer analysis
tools and other recent additions to the Linux forensics arsenal. Keep in mind that while this
document does cover some forensic strategies and basic fundamentals, it is really about the
tools we use and the concepts behind employing them. As such some of the older exercise
files may seem a bit dated but they still serve the purpose of providing a problem set on
which we can learn commands regardless of the target.

Conventions Used in this Document

When illustrating a command and its output, you will see something like the following:

root@forensicbox:~# command

output

This is essentially a command line (terminal) session where...

13

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

root@forensicbox:~#

...is the command prompt, followed by the command typed by the user and then the command’s
output.

In Linux, the command prompt can take different forms depending on the environment
settings. The defaults can differ across various Linux distributions, and can be further
modified by the user. But in general you will normally see something like the format in our
example above. This format is

user@hostname [present working directory]$

This means that we are the user root working on the computer (host) named forensicbox and
our present working directory is /root (this is the root user’s home directory - signified by
the shorthand representation of the tilde) note that for a root login, the command prompt’s
trailing character is #. We’ve customised the root user’s login prompt to show a red username
to further highlight when root is logged in1. If we log in as a regular user, the default prompt
character changes to a $ as in the following example.

user@forensicbox:~$ command

output

This is an important difference. The root user is the system "superuser" or administrator.
We will cover the differences between user logins later in this document.

Where you see blue ellipses (’...’), it indicates removed output for the sake of brevity or
clarity:

root@forensicbox:~# command

... <--removed output for brevity

output

... <--removed output for brevity

1Applying colors and other customizations to your command prompt can be done a number of ways. We
use a red root prompt as a visual cue in this guide.

14

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

1 Installation

One of the old complaints about Linux has been its seeming inability to ’autodetect’ modern
hardware. Over the years, the development of the Linux kernel - the ’brain’ of the operating
system - has been quite robust. Hardware detection and configuration used to present some
unique challenges for Linux novices. While issues can still occasionally arise, the fact is that
setting up a Linux machine as a simple workstation is no longer the potentially frustrating
exercise it once was. Automatic kernel detection of hardware has become the norm, and
most Linux distributions can be installed with a minimum of fuss on even the most cutting
edge hardware.

For the vast majority of computers out there, the default kernel drivers and settings will
work "out of the box" for both old and new systems. The range of online help available for
any given distribution is far wider now than it was even ten years ago, and most problems
can be solved with a targeted Internet search. For the most part, solutions that are effective
on one distribution will be effective across the board. This may not always be the case, but
if you are familiar with your system, you can often interpret solutions and apply them to
your particular platform.

Most recent versions of Linux distributions have extraordinary hardware detection. But it
still helps to have a good idea of the hardware you are using so if problems do arise your
support queries can be targeted.

At a minimum, you are going to want to know and plan for:

• Hard drive partitioning

– sizes and partition layout

• Network Configuration

– adaptor compatibility

– Network Management (DHCP, static, etc)

• Motherboard device support (bluetooth, wifi, etc.)

Most distributions have tons of documentation, including online help and searchable manuals.
Do a Web search and you are likely to find a number of answers to any question you might
have about hardware compatibility issues. A list of useful Linux educational resources is
provided at the end of this guide. Use them. And always remember to research first before
jumping into a forum and asking questions.

15

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

1.1 Distributions

Linux comes in a number of different "flavors". These are most often referred to as a "Linux
distribution" or "distro". Kernel configuration, available tools, and the package format (the
software install and upgrade path) most commonly differentiate the various Linux distros.

It is common to hear users complain that device X works under one distribution, but not
on another, etc. Or that device Y did not work under one version of a distribution, but a
change to another "fixed it". Often, the difference is in the version of the Linux kernel being
used and therefore the updated drivers for a given distribution.

One thing we have seen more and more of lately are somewhat specialized distros, or in some
cases, distros that are perceived as specialized. There are still your "general workstation"
flavors of Linux - Arch, CentOS, Debian, Ubuntu, Slackware, Gentoo, etc., but we also
have specialization now - full distributions designed and distributed specifically for a target
audience like pen-testers, enterprise admins, etc.

Some examples of specialized distributions that may be of interest to readers of this docu-
ment:

• Parrot OS - A security, pen testing and forensics distribution.

• SANS SIFT Workstation - An advanced incident response and digital forensics dis-
tribution that is widely supported, frequently updated, and well stocked with all the
tools you’ll need to conduct digital triage, incident response, and digital forensic ex-
aminations.

• Blackarch Linux - Another security distribution based on Arch Linux with a massive
repository of security related tools

• Kali Linux - Another penetration testing and security distribution.

There are many others, including other selections for security focused bootable distros and
"lightweight" distros. Don’t let the options confuse you, though. Find a mainstream distri-
bution, install it and learn it.

Almost all Linux distros are perfectly suitable for use as a forensic platform. A majority
of people new to Linux are gravitating toward Ubuntu as their platform of choice. The
support community is huge and a majority of widely available software for Linux forensics is
specifically built for and supported on Ubuntu (though not exclusively in most cases). On
a personal note, I find Ubuntu less than ideal for learning Linux. This is NOT to say that
Ubuntu or its variations don’t make excellent forensic platforms. But this guide is focused
on learning, and part of that journey includes starting with a clean slate and understanding
how the operating system works and is made to suit your environment. For that we focus
on a more ’manual’ and Unix-like distribution.

16

https://www.parrotsec.org/
https://digital-forensics.sans.org/community/downloads#overview
https://blackarch.org
https://www.kali.org

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

If you are unsure where to start, will be using this guide as your primary reference, and are
interested mainly in forensic applications of Linux, then I would suggest Slackware. The
original commercial distribution, Slackware has been around for decades and provides a
good standard Linux that remains true to the Unix philosophy. Not over-encumbered by
GUI configuration tools, Slackware aims to produce the most "UNIX-like" Linux distribution
available. One of my personal favorites, and in my humble opinion, currently one of the best
choices for a forensic platform. (http://www.slackware.com/). This guide is tailored for
use with a Slackware Linux installation (though it is by no means required).

One thing to keep in mind: As mentioned earlier, if you are going to use Linux as a forensic
workstation, then try not to rely on GUI tools too much. Almost all settings and configura-
tions in many Linux distributions are maintained in text files (usually in either your home
directory, or in /etc). Or are accessible by command line tools. By learning to edit the files
yourself, you avoid problems when either the X window system is not available, or when
the specific GUI tool you rely on is not on a system you might need to access. In addition,
knowledge of the text configuration files (where they exist) will give you insight into what
is "normal", and what might have been changed when you examine a subject Linux system,
though that is not the focus of this document. Learning to interpret Linux configuration
files is all part of the experience.

1.2 SLACKWARE and Using this Guide

Because of differences in architecture, the Linux distribution of your choice can cause different
results in commands’ output and, in some cases, different behavior overall. Additionally,
some sections of this document describing configuration files, startup scripts or software
installation might appear somewhat different depending on the distro you select.

If you are selecting a Linux distribution for the sole purpose of learning and following along
with this document, then again, I would suggest Slackware. Slackware is stable and does
not attempt to enrich the user’s experience with cutting edge file system hacks or automatic
configurations that might hamper forensic work. Programs and binaries included with Slack-
ware are generally left unchanged from ’upstream’, meaning Slackware specific patches are
not applied. This can make getting support from upstream developers a bit easier. Detailed
sections of this guide on the inner workings of Linux will be written toward a basic Slackware
64 bit installation.

By default, Slackware’s current installation routine leaves initial disk partitioning up to
the user. There are no default schemes that result in surprising "volume groups" or other
complex disk management techniques. The resulting partition table and file system table
(also known as fstab) are entirely user driven.

Slackware Linux is stable, consistent, and simple. As always, Linux is Linux. In theory, any
distribution can be changed to function like any other. However, my philosophy has always

17

http://www.slackware.com/

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

been to start with a simple system, rather than attempt to "roll back" a system heavily
modified and optimized for the desktop rather than a forensic workstation.

1.3 Installation Methods

Download the required bootable image file (usually in the form of an ISO), burn the im-
age to removable media and boot. This is the most common method of installing Linux.
Most distros can be downloaded for free via http, ftp, or torrent. Slackware is available at
http://www.slackware.com. Have a look at http://distrowatch.com for information on
downloading and installing other Linux distributions.

With most modern installation routines much of the work is done for you or you are prompted
for what is needed and relatively safe defaults are provided. As mentioned earlier, hardware
detection has gone through some great improvements in recent years. Many (if not most)
Linux distros are far easier and faster to install than other "mainstream" operating systems.
Typical Linux installation is well documented online (check your specific distribution’s web-
site for more information). There are numerous books available on the subject, and most of
these are supplied with a Linux distribution ready for install.

Familiarize yourself with Linux disk and partition naming conventions (covered in Chapter
II of this document) and you should be ready to start.

1.4 Slackware Installation Notes

If you do decide to give Slackware a shot, here are some simple guidelines. The documentation
provided on Slackware’s website is complete and easy to follow. Read there first...please.

Decide on standalone Linux or dual boot. Install Windows first in a dual boot system.
Determine how you want the Linux system to be partitioned. For the sake of simplicity, a
single root partition and a single swap partition are fine.

You might find it easier when first starting out to install Linux in a virtual machine (VM),
either through VirtualBox or VMware for example. This will allow you to snapshot along
the way and recover from any errors. It also provides you with access to community support
via the host while installing your Linux system in a VM. Using Linux in a virtual machine
is a perfectly acceptable way to follow this guide, and probably the easiest if you are an
absolute beginner. In courses I teach, students are encouraged to use virtual machines while
learning.

READ through the installation documentation before you start the process. Don’t be in
a hurry. If you want to learn Linux, you have to be willing to read and research. For
Slackware, have a look through the installation chapters of the updated "Slack Book" located

18

http://www.slackware.com
http://distrowatch.com

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

at http://www.slackbook.org/beta. There are detailed instructions there if you need step
by step help, including partitioning, etc. For a basic understanding of how Slackware works
and how to use it, the Slack Book should be your first stop.

Following is some installation advice. Read through this and then read the Installation
section of the Slackbook linked above.

1. Boot the install media

• Read each screen carefully

• Accepting defaults works in most cases

• Your hardware will be detected and configured under most circumstances

• Online support is extensive if you have problems

• If specific hardware causes problems during the install process (not detected, not
functioning, etc.) It does NOT mean it is unsupported. Complete the install if
you can and troubleshoot.

• The Slackware install media boots a kernel version with support for a huge selec-
tion of hardware (the kernel is called huge.s). Hit the F2 key at the boot: prompt
for more info.

• Once the system is booted, you are presented with the keyboard map prompt
followed by the slackware login: prompt. READ THE ENTIRE SCREEN as
instructed. Login as root, and continue with your install routine.

2. Partition the disk you are installing to

• You will partition your Slackware Linux system using fdisk or gdisk (if you prefer
a GPT layout). You might want to research using those prior to starting.

• This step is normally part of the installation process, or is covered in the distri-
bution’s documentation. You can partition however you like. Start with just two
partitions for simplicity:

– root as type "Linux"
– swap as type "Swap". For the swap partition you can use 2x your system

memory as a general rule for the size (up to 16GB where the performance
returns are said to be limited).

• There is no need to format the partitions you create. That will be handled during
the install routine once you select the partition(s) you are installing to.

3. Package Installation

• The main install routine for Slackware is started with the command setup. You
will need to ensure that you have your disk properly partitioned before you enter
the setup routine.

• Take the time to read each screen completely as it comes up.

19

http://www.slackbook.org/beta

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

• When asked to format the partitions, I would suggest selecting the ext4 file system.

• When asked which packages to select for installation, it is best to select a full
installation. This allows you access to all the software that is meant to come
with the system, along with multiple X Window desktop environments. For a
learning environment it will give you the most exposure to available software for
experimentation and additionally ensures that you don’t omit libraries that may
be needed for software to be installed later.

4. Installation Configuration

• Understand your boot method

– The boot loader selects the operating system to be booted
∗ Be mindful of UEFI vs. legacy BIOS options. The easiest route on a

physical computer (as apposed to a virtual machine) is to set your system
to legacy mode.

∗ LILO (the LInuxLOader) is installed by default in Slackware, but in-
stalling GRUB is possible if desired.

∗ Normally select the option to install LILO to the master boot record
(MBR) unless you are using a different boot manager in a dual boot
situation.

∗ If you must use EFI, you will need to use eLILO (you will be prompted).
Or skip the LILO install and finish your installation should you choose
to choose GRUB. GRUB can be installed for EFI after installation is
complete but before you reboot. You should read the UEFI readme that is
included on the Slackware install media’s root directory before beginning.

• Create a username for yourself. Do not use the root login for normal operations.
This is considered dangerous.

• For more information, check the file CHANGES_AND_HINTS.TXT on the install media.
This file is loaded with useful hints and changes of interest from one release to
another.

1.5 System Users

Linux is a multi-user system. It is designed for use on networks (it is based on Unix and its
original TCP/IP stack). The root user is the system administrator, and is created by default
during installation. Exclusive use of the root login is DANGEROUS. Linux assumes that
root knows what she is doing and allows root to do anything she wants, including destroy
the system. Don’t log in as root unless you must. Having said this, some of the work done for
forensic analysis will be done as root to allow access to raw devices and system commands.
Alternatively we can setup sudo to allow for ’per-command’ root access. We will discuss this
further in upcoming sections.

20

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

1.5.1 Adding a Normal User

Digital fornesics (most notably acquisitions) and basic system administration will sometimes
require root permissions. But simply logging in as root and conducting your analysis,
particularly from an X Window session, is not advisable. We need to add a normal user
account. From there you can use su to log in as root temporarily (covered in the next
section).

Slackware comes with a convenient script, adduser, to handle the details of setting up our
additional account. Some of the items set by this script include:

• Login Name

• UID (User ID)

• Initial group and group membership

• Home directory

• User shell

• Account longevity

• Account general info (name, address, etc.)

• Initial password

For the most part, the defaults are acceptable (even the default groups - be careful not to
skip this part). You invoke the script with the command adduser (run as root, obviously)
and the program will prompt you for the required information. When it asks for additional
groups, be sure to use the up arrow on your keyboard to display available groups. Accepting
the default groups is fine for our purposes.

Once complete, you can log out completely using the exit command and log back in as a
normal user.

1.5.2 The Super User [root]

So, we’ve established that we need to run our system as a normal user. If Linux gives you an
error message indicating a permissions problem, then in all likelihood you need to be root to
execute the command or edit the file, etc. You don’t have to log out and then log back in as
root to do this. Just use the su command to give yourself root permissions (assuming you
know root’s password). Enter the password when prompted. You now have root privileges
(the system prompt will reflect this). When you are finished using your privileges, return

21

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

to your original login by typing exit. We can use the whoami command to print our current
user. Here is a sample su session:

barry@forensicbox:~$ whoami

barry

barry@forensicbox:~$ /sbin/fdisk -l /dev/sda

fdisk: cannot open /dev/sda: Permission denied

barry@forensicbox:~$ su -

Password:

root@forensicbox:~# whoami

root

root@forensicbox:~# /sbin/fdisk -l /dev/sda

Disk /dev/sda: 931.5 GiB, 1000204886016 bytes, 1953525168 sectors

Disk model: Samsung SSD 850

Units: sectors of 1 * 512 = 512 bytes

Sector size (logical/physical): 512 bytes / 512 bytes

I/O size (minimum/optimal): 512 bytes / 512 bytes

Disklabel type: dos

Disk identifier: 0x7a54a740

Device Boot Start End Sectors Size Id Type

/dev/sda1 2048 526335 524288 256M 83 Linux

/dev/sda2 526336 17303551 16777216 8G 82 Linux swap

/dev/sda3 17303552 151521279 134217728 64G 83 Linux

/dev/sda4 151521280 1953525167 1802003888 859.3G 83 Linux

root@forensicbox:~# exit

logout

barry@forensicbox:~$

Note that the "-" after su allows Linux to apply root’s environment (including root’s path)
to your su login. So you don’t have to enter the full path of a command. Actually, su is a
"switch user" command, and can allow you to become any user (if you know the password),
not just root. Notice that after we type exit as root, our prompt indicates that we are back
to our normal user.

A word of caution: Be VERY judicious in your use of the root login. It can be destructive.
For simple tasks that require root permission, use su and use it sparingly.

22

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

1.6 Desktop Environment

When talking about forensic suitability, your choice of desktop system can make a difference.
First of all, the term "desktop environment" and "window manager" are NOT interchange-
able. Let’s briefly clarify the components of a common Linux GUI.

• X Window - This is the basic GUI environment. Commonly referred to as "X", it is
the application that provides the GUI framework, and is NOT part of the OS. X is a
client / server program with complete network transparency.

• Window Manager - This is a program that controls the appearance of windows in the
X Window system, along with certain GUI behaviors (window focus, etc.). Examples
are Kwin (for KDE), Metacity, XFWM, Enlightenment, i3, etc.

• Desktop Environment - A combination of Window Manager and a consistent interface
that provides the overall desktop experience. Examples are XFCE, GNOME, KDE,
etc.

– The default window manager for KDE is KWin

– The default window manager for XFCE is XFWM

These defaults can be changed to allow for preferences in speed, resource management and
even workflow preferences over the desire for "eye-candy", etc. You can also elect to run a
Window Manager without a desktop environment. For example, the Enlightenment Window
Manager is known for it’s eye-candy and can be run standalone, with or without KDE or
GNOME, etc.

Slackware no longer comes with GNOME as an option, though it can be installed like any
other application. During the base Slackware installation, you will be given a choice of KDE
(Plasma), XFCE, and some others. I would like to suggest XFCE. It provides a cleaner
interface for a beginner to learn on. It is leaner and therefore less resource intensive. You
still have access to many KDE utilities, if you elected to install KDE during package selection.
You can install more than one desktop and switch between them, if you like. The easiest
way to switch is with the xwmconfig command.

1.7 The Linux Kernel

The Linux kernel is the "brain" of the system. It is the base component of the Operating
System that allows the hardware to interact with and manage hardware drivers and system
resources.

As with all forensic tools, we need to have a clear view of how any kernel version will interact
with our forensic platforms and subject hardware.

23

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

You can determine your current kernel version with the uname command:

root@forensicbox:~# uname -a

Linux forensicbox 5.4.30 #1 SMP Thu Apr 2 16:03:32 CDT 2020 x86_64 Intel(R)

Core(TM) i5-3550 CPU @ 3.30GHz GenuineIntel GNU/Linux

The key to safe forensic use (from an evidence standpoint) of ANY operating system is
knowledge of your environment and proper testing. Please keep that in mind. You MUST
understand how your hardware and software interact with any given operating system be-
fore using it in a "production" forensic analysis. If for some reason you feel the need to
upgrade your kernel to a newer version (either through automated updates or manually),
make sure you read the documentation and the changelog so you have an understanding of
any significant architectural, or driver changes that may impact the forensic environment.

One of the greatest strengths Linux provides is the concept of "total control". This requires
thorough testing and understanding. Don’t lose sight of this in pursuit of an "easy" desktop
experience.

1.8 Kernel and Hardware Interaction

In this section, we will focus on the hardware configuration knowledge for baseline under-
standing of a sound forensic environment under current Linux distributions. We will briefly
discuss hardware configuration and inventory, device node management (eudev or udev) and
the desktop environment.

1.8.1 Hardware Configuration

It’s always useful to know exactly what hardware is on your system. There will be times
when you might need to change or select different kernel drivers or modules to make a piece
of hardware run correctly. Because there are so many different hardware configurations out
there, specifically configuring drivers for your system will remain outside the scope of this
guide. Kernel detection and configuration of devices (network interfaces, graphics controllers,
sound, etc.) is automatic in most cases. If you have any issues, make note of your hardware
(see below) and do some searching. Google is your friend, and there is a list of helpful
starting places for assistance at the end of this guide.

There are a number of ways to determine what specific hardware you are running on your
system. You can use lspci to get more detailed information on specific devices attached
to your system. lspci (list PCI devices), is for those devices specifically attached to the
PCI bus. If you have hardware issues and you search for something like "network card not
detected in linux", and you follow a link to a support forum, you will almost always find the
request to "post the output of lspci". It’s one of the first diagnostic steps for determining

24

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

many hardware issues in Linux. This command’s output can get increasingly detailed (or
"verbose") by adding the options -v, -vv, or -vvv. Note that you can run lspci from the
installation disk prior to running the setup program. Note we are logged in as root to run
lspci.

Sample summary output for lspci:

root@forensicbox:~# lspci

00:00.0 Host bridge: Intel Corporation Haswell-ULT DRAM Controller (rev 09)

00:02.0 VGA compatible controller: Intel Corporation Haswell-ULT Integrated

Graphics Controller (rev 09)

00:03.0 Audio device: Intel Corporation Haswell-ULT HD Audio Controller (rev 09)

00:14.0 USB controller: Intel Corporation 8 Series USB xHCI HC (rev 04)

00:16.0 Communication controller: Intel Corporation 8 Series HECI #0 (rev 04)

00:1b.0 Audio device: Intel Corporation 8 Series HD Audio Controller (rev 04)

00:1c.0 PCI bridge: Intel Corporation 8 Series PCI Express Root Port 3 (rev e4)

00:1d.0 USB controller: Intel Corporation 8 Series USB EHCI #1 (rev 04)

00:1f.0 ISA bridge: Intel Corporation 8 Series LPC Controller (rev 04)

00:1f.2 SATA controller: Intel Corporation 8 Series SATA Controller 1 [AHCI mode] (

↪→ rev 04)

00:1f.3 SMBus: Intel Corporation 8 Series SMBus Controller (rev 04)

04:00.0 Network controller: Intel Corporation Wireless 7260 (rev 6b)

Reading through this output you can see the network interface in this system is an Intel

↪→ Corporation Wireless 7260 chipset. This is useful information if you are having issues
with getting the interface to work and you want to search for support. You are far more
likely to get useful help if you search for "Linux Intel wireless 7260 not working" rather than
"Linux network card not working".

This brings us to the subject of kernel modules.

1.8.2 Kernel Modules

As mentioned previously, the kernel provides the most basic interface between hardware and
the system software and resource management. This includes drivers and other components
that are actually small separate pieces of code that can either be compiled as modules (loaded
or unloaded dynamically) or compiled directly in the kernel image.

There may come a time when you find that the kernel is loading a less than ideal module for
a specific piece of hardware, perhaps causing it to either fail to work, or in some cases work
at less than optimal performance. Wireless network cards can be a common example.

Looking back out our previous lspci output, for example, recall that our output showed an
Intel Corporation Wireless 7260 chipset.

25

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

If I wanted to see exactly which kernel module is being used to drive this device, I can use
the -k option to lspci (output abbreviated):

root@forensicbox:~# lspci -k | less

...

04:00.0 Network controller: Intel Corporation Wireless 7260 (rev 6b)

Subsystem: Intel Corporation Dual Band Wireless-AC 7260

Kernel driver in use: iwlwifi

Kernel modules: iwlwifi

This time the output provides some additional information, including which modules are
loaded when the device is detected. This can be an important piece of information if I’m
trying to troubleshoot a misbehaving device. Online help might suggest using a different
driver altogether. If that is the case, then you may need to "blacklist" the currently loaded
module in order to prevent it from loading and hindering the correct driver (that you may
need to specify). Blacklisting a kernel driver is normally done in /etc/modprobe.d/ by creating
a <modulename>.conf file with a blacklist entry, depending on your distribution. Files placed
in /etc/modprobe.d/ will be given precedence over identically named files in /lib/modprobe.

↪→ d/. According to /etc/modprobe.d/README:

root@forensicbox:~# cat /etc/modprobe.d/README

/etc/modprobe.d/README

#

The monolithic "blacklist" file (and others) that used to be here in this

directory have been split into several more fine-grained files and moved

to the /lib/modprobe.d/ directory. Any file in /lib/modprobe.d/ will be

overridden by an identically named file in this directory (/etc/modprobe.d/)

or /run/modprobe.d/ (but since /run is on a tmpfs, it’s not persistent

across reboots, so you probably don’t want to use it).

#

See "man modprobe.d" for more information.

#

As indicated in the README file’s output above, in Slackware you can read the man page for
modprobe.d for more information. Since the steps for this vary wildly depending on the
driver, it’s dependencies, and the existence of competing modules, we won’t cover this in
any more depth. Specific help for individual driver issues can be found online.

Note that if you are using a laptop or desktop with a USB wireless adapter, it likely won’t
show up in lspci. For that you’ll have to use lsusb (list USB - there’s a pattern here, see?).
In the following output, lsusb reveals info about a wireless network adapter. Use the -v

option for more verbose output (bold for emphasis):

root@forensicbox:~# lsusb

...

26

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

Bus 001 Device 054: ID 2109:2812 VIA Labs, Inc. VL812 Hub

Bus 001 Device 004: ID 174c:2074 ASMedia Technology Inc. ASM1074 High-Speed hub

Bus 001 Device 079: ID 1b1c:1a06 Corsair

Bus 001 Device 003: ID 046d:c077 Logitech, Inc. M105 Optical Mouse

Bus 001 Device 007: ID 11b0:6598 ATECH FLASH TECHNOLOGY

Bus 001 Device 120: ID 148f:5372 Ralink Technology, Corp. RT5372 Wireless Adapter

Bus 001 Device 005: ID 174c:2074 ASMedia Technology Inc. ASM1074 High-Speed hub

Bus 001 Device 050: ID 046d:c31c Logitech, Inc. Keyboard K120

Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub

...

Or use the script usb-devices, which organizes the information from
/sys/bus/usb/devices/usb into a (mortal) human readable format. Note that it also returns
the kernel module in use, much like lspci -k does for PCI bus devices (bold for emphasis).
We use the pipe (|) to the less command to page the output for reading (more on this
later):

root@forensicbox:~# usb-devices | less

...

T: Bus=01 Lev=01 Prnt=01 Port=05 Cnt=05 Dev#=120 Spd=480 MxCh= 0

D: Ver= 2.00 Cls=00(>ifc) Sub=00 Prot=00 MxPS=64 #Cfgs= 1

P: Vendor=148f ProdID=5372 Rev=01.01

S: Manufacturer=Ralink

S: Product=802.11 n WLAN

C: #Ifs= 1 Cfg#= 1 Atr=80 MxPwr=450mA

I: If#= 0 Alt= 0 #EPs= 7 Cls=ff(vend.) Sub=ff Prot=ff Driver=rt2800usb

...

Note that the commands covered here are largely portable across distributions, but the
locations of files and methods for managing modules may differ. The process of identify-
ing modules and hardware should mostly be the same. Manual pages (read using the man

command) and distribution documentation should always be relied on for primary problem
solving.

Keep in mind that these same commands can be run against a subject computer by using
Linux based forensic boot media. If you have the time, it’s a great way to inventory a
subject computer either prior to seizure or if you cannot seize the computer (only image it
for whatever reason), but still wish to have a full hardware inventory.2

2We will cover more ’verbose’ commands for hardware inventory later

27

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

1.8.3 Hotplug devices and UDEV

In modern distributions, Linux device management has been handed over to eudev (or udev
under Systemd)3. In the past, the device nodes (files representing the devices, located in the
/dev directory) were static, that is they existed at all times, whether in use or not.

So why do we cover device hot-plugging in a forensic guide? A basic knowledge of device
access is critical to understanding how devices (external disks, subject hard drives, etc.) are
detected and presented to the examiner.

Udev creates device nodes "on the fly". The nodes are created as the kernel detects the
device and the /dev directory is populated in real time. In addition to being more efficient,
udev also runs in user space. One of the benefits of udev is that it provides for "persistent
naming". In other words, you can write a set of rules that will allow udev to recognize a
device based on individual characteristics (serial number, manufacturer, model, etc.). The
rule can be written to create a user-defined link in the /dev directory, so that for example, my
thumb drive can always be accessed through an arbitrary device node name of my choice,
like /dev/my-thumb, if I so choose. This means that I don’t have to search through USB
device nodes to find the correct device name if I have more than one external storage device
connected. Writing such rules is outside the scope of this document. We will used udisks to
accomplish persistent naming with properly labeled volumes.

On Slackware, [e]udev runs as a daemon from the startup script /etc/rc.d/rc.udev. We
will discuss these startup scripts in more detail later in this document. We will not do any
specific configuration for udev on our forensic computers at this time. We discuss it here
simply because it plays a major part in device handling and as such is of interest to forensic
examiners that want to know what their system is doing. udev does NOT involve itself in
auto mounting or otherwise interacting with applications. It simply provides a hardware to
kernel interface. Disks and other storage media are handled by udisks or udisks2. We will
cover this in more detail later.

3eudev is actually a non-Systemd port of udev - I use udev in this document to avoid differentiating every
time. eudev was developed by Gentoo and is used in Slackware as well as a replacement for the Systemd
bound udev

28

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

2 Linux Disks, Partitions, and the File System

As you go through the following pages, please pay attention to your userid...you’ll need to be
root or use sudo for some of this.

2.1 Disks

In Linux, devices are enumerated as files. This is an important concept for forensic examiners.
It means, as we will see later on, that many of the commands we can use on regular files, we
can also use on disk "files". We can list them, hash them and search them in much the same
way we do files in any standard user directory. The special directory where these device
"files" are maintained is /dev.

As we saw earlier, with the adoption of eudev and udisks, disks are now assigned device node
names dynamically, meaning that the names do not exist until the device (a thumb drive,
for example) is connected to the system. Of course when you boot a normally configured
computer you usually have at least one "boot" drive already connected. Under most circum-
stances this will be named sda. These device nodes are populated under the /dev directory.
The partitions are simply numbered.

When referring to the entire disk, we use /dev/sda. When referring to a partition on that
disk, we use the disk name and the number of the partition, /dev/sda1 for example.

Device File Name
First Disk /dev/sda

partition 1 /dev/sda1

partition 2 /dev/sda2

Second Disk /dev/sdb

partition 1 /dev/sdb1

partition 2 /dev/sdb2

Optical Media /dev/sr0

The pattern described above is fairly easy to follow. If you are using a standard SATA disk,
it will be referred to as sdx where the x is replaced with an a for the first detected drive and
b for the second, etc. In the same way, the CD ROM or DVD drives connected via the SATA
bus will be detected as /dev/sr0 and then /dev/sr1, etc.

Note that the /dev/sdx device nodes will include USB devices. For example, a primary SATA
disk will be assigned sda. If you attach a USB disk or a thumb drive it will normally be
detected as sdb, and so on.

29

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

There are some more modern storage devices with more complex naming schemes. PCIe
based storage devices like NVMe include newer concepts like "name spaces" where the tra-
ditional conventions illustrated in the table above are extended beyond simple partition
numbers. If you have an NVMe storage device with two partitions in a single name space,
the partitions would be named as follows:

Device File Name
First NVMe Disk / Name space /dev/nvme0n1

partition 1 /dev/nvme0n1p1

partition 2 /dev/nvme0n1p2

We will discuss NVMe storage media a little later on.

A simple way to see the disks and partitions that are attached to your system is to use the
lsblk command:

root@forensicbox:~# lsblk

NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT

sda 8:0 0 111.8G 0 disk

sda1 8:1 0 64M 0 part

sda2 8:2 0 128M 0 part /boot

sda3 8:3 0 4G 0 part [SWAP]

sda4 8:4 0 107.6G 0 part /

sdb 8:16 0 1.8T 0 disk

sdb1 8:17 0 1.8T 0 part /home

sdc 8:32 1 15G 0 disk

sdc1 8:33 1 15G 0 part /run/media/barry/Evidence

sr0 11:0 1 1024M 0 rom

You can see from the output that disks and partitions are listed, and if any of the partitions
are mounted, lsblk will also give us the current mount point. In this case we see /dev/sda2

is mounted on /boot, /dev/sda3 is our swap partition, /dev/sda4 is our root partition, and
we have /dev/sdc1 mounted as /run/media/barry/Evidence. The latter volume is from an
external device, plugged in and mounted via the desktop.

Another option for disk information is lsscsi. Although lsscsi does not show partitions, it
does give more information about the actual media:

root@forensicbox:~# lsscsi

[0:0:0:0] disk ATA INTEL SSDSC2CT12 300i /dev/sda

[2:0:0:0] disk ATA Hitachi HDS72302 A5C0 /dev/sdb

[3:0:0:0] cd/dvd HL-DT-ST DVDRAM GH24NS90 IN01 /dev/sr0

[8:0:0:0] disk hp v125w 1.00 /dev/sdc

30

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

You can see in the output above that this particular system has a USB device and two
internal drives. One drive is an INTEL SSD, the other a Hitachi hard disk. There are also
a DVD drive (/dev/sr0,) and an HP v125w thumb drive (/dev/sdc). lsscsi does not come
on most platforms by default (although it does on Slackware). If your system does not have
it by default, check your distribution’s package manager and install it.

Here we see output from another computer with a single SATA disk and a single NVMe
drive:

root@forensicbox:~# lsscsi

[5:0:0:0] disk ATA Samsung SSD 870 2B6Q /dev/sda

[N:0:4:1] disk Samsung SSD 970 EVO Plus 1TB__1 /dev/nvme0n1

There are other names, using links, that can access these device nodes. If you explore the
/dev/disk directory you will see links that provide access to the disk devices through volume
labels, disk UUID, kernel path, etc. These names are useful to us because they can be used
to access a particular disk in a repeatable manner without having to know what device node
a disk will be assigned (/dev/sdc or /dev/sdd for example). For now, just be aware that you
can access a disk by a name other than the simple sdx assigned node. Also note that some
of the assigned nodes might not yet have media attached. In many cases media readers can
be detected and assigned nodes before media is inserted.

Now that we have an idea of what our disks are named, we can look at the partitions and
volumes. The fdisk program can be used to create or list partitions on a supported device.
This is an example of the output of fdisk on a different Linux workstation using the "list"
option (-l [dash "el"]):

root@forensicbox:~# fdisk -l /dev/sda

Disk /dev/sda: 111.8 GiB, 120034123776 bytes, 234441648 sectors

Disk model: INTEL SSDSC2CT12

Units: sectors of 1 * 512 = 512 bytes

Sector size (logical/physical): 512 bytes / 512 bytes

I/O size (minimum/optimal): 512 bytes / 512 bytes

Disklabel type: gpt

Disk identifier: 08FD4B34-555D-4CFF-A32A-0218C1287428

Device Start End Sectors Size Type

/dev/sda1 2048 133119 131072 64M BIOS boot

/dev/sda2 133120 395263 262144 128M Linux filesystem

/dev/sda3 395264 8783871 8388608 4G Linux swap

/dev/sda4 8783872 234441614 225657743 107.6G Linux filesystem

fdisk -l /dev/sd[x] is one way to get a list of all the partitions available on a particular
drive. Each partition is identified by its Linux name. The beginning and ending sectors for

31

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

each partition are given. The number of sectors per partition are displayed. Finally, the
partition type is displayed.

Note that the output of fdisk will change depending on the disklabel type of the media
being queried. The above output shows a disk with a GPT label. If you have a standard
DOS style MBR, the output will show slightly different fields. For native handling of GPT
partition labels, you can use gdisk. Here is the output of gdisk on the same drive:

root@forensicbox:~# gdisk -l /dev/sda

GPT fdisk (gdisk) version 1.0.4

Partition table scan:

MBR: protective

BSD: not present

APM: not present

GPT: present

Found valid GPT with protective MBR; using GPT.

Disk /dev/sda: 234441648 sectors, 111.8 GiB

Model: INTEL SSDSC2CT12

Sector size (logical/physical): 512/512 bytes

Disk identifier (GUID): 08FD4B34-555D-4CFF-A32A-0218C1287428

Partition table holds up to 128 entries

Main partition table begins at sector 2 and ends at sector 33

First usable sector is 34, last usable sector is 234441614

Partitions will be aligned on 2048-sector boundaries

Total free space is 2014 sectors (1007.0 KiB)

Number Start (sector) End (sector) Size Code Name

1 2048 133119 64.0 MiB EF02 BIOS boot partition

2 133120 395263 128.0 MiB 8300 Linux filesystem

3 395264 8783871 4.0 GiB 8200 Linux swap

4 8783872 234441614 107.6 GiB 8300 Linux filesystem

BEFORE FILE SYSTEMS ON DEVICES CAN BE USED, THEY MUST BE MOUNTED!
Any file systems on partitions you define during installation will be mounted automatically
every time you boot.

Even when not mounted devices can still be written to. Simply not mounting a file system
does not protect it from being inadvertently changed through your actions or via mechanisms
outside your control. While general forensic processes are outside the scope of this guide, it
should be common practice to test your procedures and document every action.

32

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

2.2 Device Node Assignment - Looking Closer

Another common question arises when a user plugs a device in a Linux box and receives no
feedback on how (or even if) the device was recognized. One easy method for determining
how and if an inserted device is registered is to use the dmesg command.

For example, if I plug a USB thumb drive into a Linux computer I may well see an icon
appear on the desktop for the disk. I might even see a folder open on the desktop allowing
me to access the files automatically (undesirable behaviour for a forensic workstation). If
I’m at a terminal and there is no X desktop, I may get no feedback at all. I plug the disk
in and see nothing. I can, of course, run the lsscsi command to see if my list of media
refreshed. But I may want more info than that.

So where can we look to see what device node was assigned to our disk (/dev/sdc, /dev/sdd,
etc.)? How do we know if it was even detected? Again, this question is particularly pertinent
to the forensic examiner, since we may likely configure our system to be a little less "helpful"
in automatically opening folders, etc.

Plugging in the thumb drive and immediately running the dmesg command provides the
following output (abbreviated for readability):

root@forensicbox:~# dmesg

...

[2382040.400775] usb 1-4.1: new high-speed USB device number 4 using xhci_hcd

[2382040.491674] usb 1-4.1: New USB device found, idVendor=03f0, idProduct=3307,

↪→ bcdDevice=10.00

[2382040.491677] usb 1-4.1: New USB device strings: Mfr=1, Product=2, SerialNumber

↪→ =3

[2382040.491679] usb 1-4.1: Product: v125w

[2382040.491681] usb 1-4.1: Manufacturer: hp

[2382040.491683] usb 1-4.1: SerialNumber: 002354C611A8AC3162CF005C

[2382040.492327] usb-storage 1-4.1:1.0: USB Mass Storage device detected

[2382040.492501] scsi host8: usb-storage 1-4.1:1.0

[2382044.130418] scsi 8:0:0:0: Direct-Access hp v125w 1.00 PQ:

↪→ 0 ANSI: 4

[2382044.132140] sd 8:0:0:0: [sdc] 31334400 512-byte logical blocks: (16.0 GB/14.9

↪→ GiB)

[2382044.133608] sd 8:0:0:0: [sdc] Write Protect is off

[2382044.133610] sd 8:0:0:0: [sdc] Mode Sense: 2f 00 00 00

[2382044.135212] sd 8:0:0:0: [sdc] Write cache: disabled, read cache: enabled,

↪→ doesn’t support DPO or FUA

[2382044.141413] sdc: sdc1

[2382044.146351] sd 8:0:0:0: [sdc] Attached SCSI removable disk

The important information is in bold. Note that this particular thumb drive (an HP v125w)
provides a single volume with a single partition (/dev/sdc1). The dmesg output can be long,

33

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

so you can pipe through less (dmesg | less) or scroll through the output if needed.

You can also follow the output of dmesg in real time by watching the output of /var/log/

↪→ messages with tail -f, which essentially means "watch the tail of the file and follow it
as it grows". Start the following command and then plug in a USB device. You’ll see the
messages as the kernel detects the device you plug in.

root@forensicbox:~# tail -f /var/log/messages

...<plug in a device and watch the kernel messages>

We mentioned NVMe storage media before and how they have a different naming scheme as
a result of ’name spaces’ and other architectural changes. On a system with NVMe media
installed you might see the following using dmesg:

root@forensicbox:~# dmesg

...

[0.677521] nvme nvme0: pci function 0000:3d:00.0

[0.904343] nvme0n1: p1 p2

...

The above dmesg output shows a single NVMe storage device with a single namespace
containing two partitions.

This section covered the identification of devices detected by the Linux kernel. We will
discuss collecting information about these devices in later sections.

34

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

2.3 The File System

Like the Windows file system, the Linux file system is hierarchical. The "top" directory is
referred to as "the root" directory and is represented by "/". Note that the following is not
a complete list, but provides an introduction to some important directories.

On most Linux distributions, the directory structure is organized in the same manner. Cer-
tain configuration files and programs are distribution dependent, but the basic layout is
similar to this. Note that the directory “slash” (/) is opposite what most people are used to
in Windows.

/ (root of the tree - not to be confused with /root (root’s home)

bin

boot

dev

(devices)

etc

X11

rc.d

(other config dirs)

home

user1 (home dir files)

user2

lib (32 bit system libraries)

lib64 (64 bit system libraries)

media (udisks mounts)

mount points

mnt

mount points

35

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

/ (root - continued)

opt (software installed here on some systems)

root (root’s home)

run

media (dynamic udisks2 mount points)

sbin (system binaries)

usr

local

lib

var (logging)

Directory contents can include:

• /bin

– Common commands - ls, cd, etc.

• /boot

– Files needed at boot - including the kernel images pointed to by LILO (the LInux
LOader) or GRUB.

• /dev

– Files that represent devices on the system.These are the device nodes.

• /etc

– Administrative configuration files and scripts.

• /home

– User’s home directories. Each user directory can be extended by the respective
user and will contain their personal files as well as user specific configuration files
(for X preferences, etc.).

• /lib

– 32 bit software libraries

• /lib64

– 64 bit software libraries

36

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

• /media

– Provides a standard place for system wide removable media.

• /mnt

– Provides temporary mount points for external, remote and removable file systems.
This is the legacy directory for manually mounting volumes

• /opt

– Directory for external or "optional" software. Some programs (Google Chrome,
for example) will install into this directory.

• /root

– The root user’s home directory.

• /run

– Dynamic run time files for system daemons like [e]udev and udisks. This directory
is where you might find external volumes mount from the desktop or via any
udisks2 interface.

• /sbin

– Administrative and system commands. (fdisk, ifconfig, etc.)

• /usr

– Contains locals software, libraries, games, etc.

• /var

– Logs and other variable files will be found here.

Another important concept when browsing the file system is that of relative versus explicit
paths. While confusing at first, practice will make the idea second nature. Just remember
that when you provide a path name to a command or file, including a "/" in front means
an explicit path, and will define the location starting from the top level directory (root).
Beginning a path name without a "/" indicates that your path starts in the current directory
and is referred to as a relative path. More on this later.

One very useful resource for this subject is the File System Hierarchy Standard (FHS),
the purpose of which is to provide a reference for developers and system administrators on
file and directory placement. Read more about it at https://en.wikipedia.org/wiki/
Filesystem_Hierarchy_Standard.

37

https://en.wikipedia.org/wiki/Filesystem_Hierarchy_Standard
https://en.wikipedia.org/wiki/Filesystem_Hierarchy_Standard

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

2.4 Mounting External File Systems

There is a long list of file system types that can be accessed through Linux. This is accom-
plished using the mount command. Linux has a couple of special directories used to mount file
systems to the existing Linux directory tree. One directory is called /mnt. It is here that you
can manually attach new file systems from external (or internal) storage devices that were
not mounted at boot time. Typically, the /mnt directory is used for temporary mounting.
Other available directories are /media, and /run/media which provide a standard location
for users and applications to mount removable media. Actually you can mount file systems
anywhere (not just on /mnt), but it’s better for organization. Since we will be dealing with
mostly temporary mounting of potential evidence volumes, we will use the /mnt directory for
most of our work, but there are other equally valid options. This provides a brief overview.

For manual mounting using the mount command, anytime you specify a mount point you
must first make sure that that directory exists. For example to mount a USB volume under
/mnt/evidence you must be sure that /mnt/evidence exists. After all, suppose we want to
have a CD ROM and a USB drive mounted at the same time? They can’t both be mounted
under /mnt (you would be trying to access two file systems through one directory!). So we
create directories for each device’s file system under the parent directory /mnt. You decide
what you want to call the directories, but make them easy to remember. Keep in mind that
until you learn to manipulate the file /etc/fstab (covered later), only root can mount and
unmount file systems (manually and explicitly) to /mnt and its subdirectories.

Newer distributions usually create mount points for you, but you might want to add others
for yourself (mount points for external disks to write results to, etc.; like /mnt/data or /mnt

↪→ /analysis). :

root@forensicbox:~# mkdir /mnt/analysis

2.4.1 The mount Command

The mount command uses the following syntax:

mount -t <filesystem> -o <options> <device> <mountpoint>

One of the options we pass to the mount command, using -t, is the file system type 4. But
what if you don’t know what file system is on a device you’ve been handed? First, we need
to to know the partition layout of the device. Is there one partition? Two? Once we’ve
selected the partition we want to work with, we need to know what file system might be on

4Actually, modern Linux systems do a pretty decent job of auto detecting file system types, but being
explicit is never a bad thing.

38

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

there. We can accomplish this with using a series of commands we covered earlier. We use
the lsblk command to view our devices that have been detected, and show the partitions
that we might try to mount. Then we use the file command with the -s option to determine
the file system type we will be mounting. For example, if I insert a thumb drive into my
system and I want to manually mount it, I can use the following commands to gather the
information I need:

root@forensicbox:~# lsblk

NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT

sdb 8:16 1 119M 0 disk

sdb1 8:17 1 118M 0 part

sda 8:0 0 1.8T 0 disk

sda2 8:2 0 1.8T 0 part /home

sda1 8:1 0 128M 0 part /boot

nvme0n1 259:0 0 953.9G 0 disk

nvme0n1p1 259:1 0 64G 0 part

nvme0n1p2 259:2 0 889.9G 0 part /

root@forensicbox:~# file -s /dev/sdb1

/dev/sdb1: Linux rev 1.0 ext4 filesystem data , UUID=22e4d5cc-

7713-4b17-b2df-11b17a73b954, volume name "Win10Image" (extents) (large files) (huge

↪→ files)

The pertinent output is highlighted in red. lsblk shows us that the drive was detected as
/dev/sdb with a single partition at /dev/sdb1. The file command reads the signature of
the partition and determines it is an EXT4 file system. We will discuss the file command
extensively later in this guide. For now, just understand that it determines the type of file
by its signature (regardless of extension or name), in this case a file system signature. Note
the last block device listed in the lsblk output is an NVMe device with a single namespace
and two partitions.

We can then use that information to mount the drive (this command assumes the directory
/mnt/analysis exists – if not then create it with mkdir):

root@forensicbox:~# mount -t ext4 /dev/sdb1 /mnt/analysis

Now change directory to the location of the newly mounted file system:

root@forensicbox:~# cd /mnt/analysis

You should now be able to navigate the thumb drive as usual. Essentially, what we have
done here is take the logical contents of the file system on /dev/sdb1 and made it available
to the user through /mnt/analysis. You can now browse the contents of the disk.

39

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

When you are finished, leave the /mnt/analysis directory (if you do the cd command by
itself, you will return to your home directory), and unmount the file system with:

root@forensicbox:~# umount /mnt/analysis

Some points to keep in mind:

• Note the proper command is umount not unmount. This cleanly unmounts the file system
and makes it safe to remove the media from the system.

• If you get an error message that says the file system cannot be unmounted because it
is busy, then you most likely have a file open from that directory, or are using that
directory from another terminal. Check all your terminals and virtual terminals and
make sure you are no longer in the mounted directory.

Another example: Reading an optical disk

• Insert the optical media

• Many optical disks will use the ISO9660 file system. You can check this with either
the lsblk -f or the file command on the optical drive (in this case /dev/sr0) with
the media inserted:

root@forensicbox:~# file -s /dev/sr0

/dev/sr0: ISO 9660 CD-ROM filesystem data ’CDDATA’

• Now we can mount the media and change to the newly mounted file system:

root@forensicbox:~# mount -t iso9660 /dev/sr0 /mnt/cdrom

mount: /dev/sr0 is write-protected, mounting read-only

root@forensicbox:~# cd /mnt/cdrom

root@forensicbox:~# ls

autorun.inf* document/ installmanager/ menu/ tools/

• You can now navigate the optical media volume as needed. When finished, leave
the /mnt/cdrom directory (change to you home directory again with cd or cd ~) and
unmount the file system with:

40

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

root@forensicbox:~# umount /mnt/cdrom

If you want to see a list of file systems that are currently mounted, just use the mount

command without any arguments or parameters. It will list the mount point and file system
type of each device on system, along with the mount options used (if any). Note in the
output below you can see the optical disk I just mounted (and did not unmount):

root@forensicbox:~# mount

/dev/sda3 on / type ext4 (rw)

proc on /proc type proc (rw)

sysfs on /sys type sysfs (rw)

tmpfs on /dev/shm type tmpfs (rw)

/dev/sda1 on /boot type ext4 (rw)

/dev/sr0 on /mnt/cdrom type iso9660 (ro)

The mount command will also list psudo file systems as well, giving extremely cluttered
output that you’ll need to sort through.

In fact, using mount to list mounted file systems is generally considered deprecated. A far
more flexible method is to use findmnt with the --real option. This give a "tree like" view
of mounted physical volumes as shown below.

root@forensicbox:~# findmnt --real

TARGET SOURCE FSTYPE OPTIONS

/ /dev/nvme0n1p4 ext4 rw,relatime

/mnt/thumb /dev/sdb1 ext4 rw,nosuid,nodev,relatime,errors=remount-ro

/boot /dev/nvme0n1p2 ext4 rw,relatime

/boot/efi /dev/nvme0n1p1 vfat rw,relatime,fmask=0022,dmask=0022

/home /dev/sda1 ext4 rw,relatime

The ability to mount and unmount file systems is an important skill in Linux. We use it to
view the contents of a physical volume, and we use it to mount external storage for collecting
evidence files, etc. There are many options that can be used with mount (some we will cover
later), and a number of ways the mounting can be done easily and automatically. Refer to
the info or man pages for the mount command for additional information.

In most modern distributions, optical disks will be auto-detected, and an icon placed on the
desktop for it. Of course this will depend on your particular setup, but this is generally
the case whether you are using XFCE, KDE, Unity, or some other combination of GUI and
window manager. We’ll cover more on GUI disk handling in an upcoming section.

41

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

2.4.2 The File System Table (/etc/fstab)

It might seem like mount -t iso94660 /dev/sr0 /mnt/cdrom is a lot to type every time you
want to mount an optical disk. One way around this is to edit the file /etc/fstab (“file
system table”). This file allows you to provide defaults for your mountable file systems,
thereby shortening the commands required to mount them. The system also uses /etc/

↪→ fstab to mount default file systems when the computer starts.

My /etc/fstab looks like this:

root@forensicbox:~# cat /etc/fstab

/dev/sda2 swap swap defaults 0 0

/dev/sda3 / ext4 defaults 1 1

/dev/sda1 /boot ext4 defaults 1 2

/dev/cdrom /mnt/cdrom auto noauto,owner,ro 0 0

devpts /dev/pts devpts gid=5,mode=620 0 0

proc /proc proc defaults 0 0

tmpfs /dev/shm tmpfs defaults 0 0

The columns are:

<device> <mount point> <file system type> <default options>

With this in the /etc/fstab, I can mount optical media by simply issuing the command:

root@forensicbox:~# mount /mnt/cdrom

The above mount commands look incomplete. When not enough information is given, the
mount command will look to /etc/fstab to fill in the blanks. If it finds the required info,
it will go ahead with the mount. To find out more about available options for /etc/fstab,
enter info fstab at the command prompt. After installing a new Linux system, have a look
at /etc/fstab to see what is available for you. If what you need isn’t there, add it. In
this particular case, the entry for /dev/cdrom (a symbolic link or ’shortcut’ to /dev/sr0) was
uncommented by removing the # symbol from the front of the line.

2.4.3 Userspace Mounting

Mounting can also take place via automated or partially automated processes through your
desktop environment. Linux has a huge list of available choices in desktop systems and
management (XFCE, KDE, Gnome, Mate, etc.). They all have the capability to handle and
mount removable devices for the user. This is normally done through the dynamic addition

42

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

of context capable desktop icons that may appear when removable media is plugged in.
Volumes can then be mounted via a right-click menu.

There are a number of useful changes for the general Linux user that makes this sort of
desktop capable mounting make sense. First, for general daily use as a desktop workstation,
who wants to have to log in as root to mount external devices? What if you are working on
a system that you don’t have elevated privileges on? In addition to the personal logistics,
there’s also the fact that the more modern mounting systems will place removable device
mount points to a user’s personal space rather than a system wide mount point. This offers
better security and accessibility for the user.

The following example will show what can happen on an XFCE desktop when a USB drive
is inserted. This is just an illustration. Be sure to check your own system for default
configurations that might differ from this. You certainly don’t want to accidentally mount
evidence just because you were unaware the system is doing it for you.

In this case the USB disk has a partition with a volume label Corsair_32G (the volume label
can be set by any number of tools when the file system is formatted).

With the USB drive inserted, an icon appears on the desktop.

Figure 1: XFCE with USB volume Corsair_32G inserted

Back in the earlier section on disks and device nodes, we talked about device detection and
naming. In addition to the /dev/sdx naming, there are other names assigned to the disk by
UUID, label, and kernel path. When I see the Corsair_32G label appear on the desk top,
a terminal can quickly be opened to see exactly what partition on which disk that label
belongs to by accessing the /dev/disk/ sub-folders, specifically /dev/disk/by-label:

Using ls -l we see that the file /dev/disk/by-label/Corsair_32G is a symlink, or shortcut
to /dev/sdb1.

43

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

root@forensicbox:~# ls -l /dev/disk

total 0

drwxr-xr-x 2 root root 180 Sep 8 14:23 by-id/

drwxr-xr-x 2 root root 60 Sep 8 14:23 by-label/

drwxr-xr-x 2 root root 120 Sep 8 14:23 by-partuuid/

drwxr-xr-x 2 root root 80 Sep 8 14:23 by-path/

drwxr-xr-x 2 root root 120 Sep 8 14:23 by-uuid/

root@forensicbox:~# ls -l /dev/disk/by-label/

total 0

lrwxrwxrwx 1 root root 10 Sep 8 14:23 Corsair_32G -> ../../sdb1

If we right click on the icon and select Mount Volume from the menu, the volume is mounted
on /run/media/$USER]/$LABEL. In this case the user is barry and the label is Corsair_32G.

Figure 2: Right-click context menu for disk mounting [XFCE]

Once mounted, we can see the results from the terminal using the findmnt --real command:

root@forensicbox:~# findmnt -real

TARGET SOURCE FSTYPE OPTIONS

/ /dev/sda3 ext4 rw,relatime

/run/media/barry/Corsair_32G /dev/sdb1 exfat rw,nosuid,nodev,relatime

/boot /dev/sda1 ext4 rw,relatime

Make sure you know how to control the mounting of disks and volumes within your desktop
environment. XFCE shipped with Slackware does no auto-mounting of any volumes by
default. The icons appear on the desktop, but you are free to mount them as you see
fit. There are configuration options available to change this behavior, so be careful. Make
sure you test what happens when you "hot plug" USB media or other removable storage.
For example, some distributions might elect to auto-mount devices on the GUI desktop
immediately upon insertion. This is undesirable for digital forensics.

44

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

XFCE is a lighter weight (meaning lighter on resources) desktop. And while XFCE is capable
of automatically handling hot plugged devices, it also allows for easy control. Consider
the following snapshot of an XFCE settings dialog for removable media. By default, on
Slackware, devices are NOT auto mounted in the XFCE environment. Not all distributions
might be configured this way, however. Be sure to check and test for yourself. As a forensic
examiner, you do NOT want your system automatically mounting devices simply because
you plugged them into the system. We will cover this in a bit more detail later.

Figure 3: XFCE Removable Media Dialog

You might notice that we need to be logged in as root to use the mount command to manually
mount a volume to /mnt (or any other directory we create). The same applies when we try
to mount a volume manually that is not defined in /etc/fstab. On the other hand, when we
insert media and use the desktop icon to mount the device, we can be logged in as a normal
user and simply right click on the device icon to have it mount to /run/media/XXX. So how
is that happening?

Userspace mounting on most Linux systems is handled by the udisks package. There are
two versions of this: udisks and udisks2 (the newer version). For the sake of simplification,
we’ll say that if your system is using udisks (version 1), it will normally mount to /media.
If your system is using udisks2, it will normally mount to /run/media/$USER. As we’ve seen,
this userspace mounting can be done via the desktop using the mouse.

What happens if you are at a terminal without a GUI, or if you are using a desktop/window
manager that does not allow for dynamic volume icons? You can still use the userspace
capabilities of udisks on the command line. The following command session shows the use
of the udisks2 command line utility udisksctl by a normal user to mount a volume. Note
that udisksctl mounts to /run/media/$USER (it’s a udisks2 utility).

barry@forensicbox:~$ lsblk

NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT

45

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

sdb 8:16 1 14.3G 0 disk

sdb1 8:17 1 14.3G 0 part

...

barry@forensicbox:~$ udisksctl mount -b /dev/sdb1

Mounted /dev/sdb1 at /run/media/barry/SANDISK.

barry@forensicbox:~$ lsblk

NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT

sdb 8:16 1 14.3G 0 disk

sdb1 8:17 1 14.3G 0 part /run/media/barry/SANDISK

...

The above session shows the output of lsblk to identify the volume we want to mount. The
udisksctl command with the mount and -b /dev/sdb1 options is then run and the resulting
successful mount is displayed. (-b specifies the ’block’ device to mount). We then use lsblk

again, this time showing the volume /dev/sdb1 and it’s mount point in /run/media. Notice
that we are only providing a volume to mount, we do not provide a mount point. udisks
will use the volume label (in this case it’s SANDISK) to create a dynamic mount point under
/run/media/$USER. If there is no volume name, then it uses the volume UUID.

We unmount the volume using udisksctl as well (and then re-check with lsblk just for good
measure):

user@forensicbox:~$ udisksctl unmount -b /dev/sdb1

Unmounted /dev/sdb1.

barry@forensicbox:~$ lsblk

NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT

sdb 8:16 1 14.3G 0 disk

sdb1 8:17 1 14.3G 0 part

...

In this section we’ve covered enough about dealing with disks to get you started on accessing
storage media and volumes. Next, we’ll delve into actually being able to manipulate and
view some data with an introduction to basic commands.

46

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

3 Basic Linux Commands

3.1 Very Basic Navigation

Here we are going to go over the basic commands to allow you to navigate the command
line. There are plenty of resources out there to learn the command line. This should just
provide a start to get you through the guide.

We’ll start with some basic navigation.

Directory Listings:

ls list the contents of a directory
ls -a list the contents of a directory, including hidden

(dot) files
ls -l detailed listing
ls -lh detailed listing with human readable sizes
ls -R list the contents of a directory recursively

Command options can be combined, so that if we use ls -lhaR we’ll get a detailed listing of
files, with sizes in ’human readable’ format, including hidden (or ’dot’ files), recursively.

A simple ls -lah will give us the following:

barry@forensicbox:~$ ls -lah

total 52K

drwxr-xr-x 2 barry users 4.0K Jun 3 14:20 Code/

drwxr-xr-x 2 barry users 4.0K Jun 3 14:20 Documents/

drwxr-xr-x 2 barry users 4.0K Jun 3 14:20 Samples/

drwxr-xr-x 2 barry users 4.0K Jun 3 14:20 Utilities/

drwxr-xr-x 2 barry users 4.0K Jun 3 14:20 Videos/

-rw-r--r-- 1 barry users 6.4K Jun 3 14:21 config.txt

-rw-r--r-- 1 barry users 21K Jun 3 14:21 sample.doc

We will discuss the columns in the ls output in more detail later on, though some like - file
size and file name - are obvious.

Changing Directories:

cd <dir> Change to directory <dir>
cd (without arguments) Shortcut to your home direc-

tory
cd .. Change to the parent directory of the current di-

rectory (on level up)

47

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

cd - Change to the last directory you were in
cd /dirname change to the specified directory. Note that the

addition of the "/" in front of the directory im-
plies an explicit (absolute)path, not a relative one.
With practice, this will make more sense.

cd dirname change to the specified directory. The lack of a
"/" in front of the directory name implies a relative
path meaning dirname is a subfolder of our current
directory.

Copy files:

cp <source> <dest> Copy file <source> to <destination>
cp -r <source> <dest> Copy a directory recursively

Move a file or directory:

mv <source> <dest> Move or rename a file or directory <source> to
<destination>

Delete a file or directory:

rm <target> Delete a file
rm -r <targetdir> Delete a directory recursively (including subdirec-

tories)
rmdir <target> Delete a directory (if empty)
rm -f <target> Force removal without prompt

Create a directory:

mkdir <directory> Create a directory called <directory>

Display command help:

man <command> Display a "manual" page for the specified <com-
mand>. Use ’q’ to quit. Remember this one. Very
Useful.

If you want to find information about a command and its various options, you use the
man(ual) page. For example, the find command can be daunting. But I can gather lots of
helpful information with man find:

48

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

barry@forensicbox:~$ man find

FIND(1) General Commands Manual FIND(1)

NAME

find - search for files in a directory hierarchy

SYNOPSIS

find [-H] [-L] [-P] [-D debugopts] [-Olevel] [starting-point...] [

↪→ expression]

DESCRIPTION

This manual page documents the GNU version of find. GNU find searches the

directory tree rooted at each given starting-point by evaluating the given

...

Display the contents of a (plain text) file:

cat <filename> The simplest way to display the contents of a file,
this command streams the contents of a file to
standard output (normally the terminal). Stands
for concatenate and can also be used to combine
files.

less <filename> Page through a file line by line or page by page.

3.1.1 Additional Useful Commands

grep : Searches for patterns.

grep pattern filename

The grep command will look for occurrences of <pattern> within the file <filename>. grep is
an extremely powerful tool. It has hundreds of uses given the number of options it supports.
Check the man page for more details. We will use grep in our forensic exercises later on.

find : Searches for files based on any number of criteria. These can include dates, sizes,
name patterns, object type, etc.

find <start dir> <criteria>

A simple search for a file named fstab could look something like this:

root@forensicbox:~# find /etc -iname fstab

/etc/fstab

49

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

This means "find, starting at the /etc directory" by name, fstab. find will allow you to
search by file type (regular files vs. directories, etc.), or even various file times. We’ll use
this tool extensively later on. Check man find and see if you can find the difference between
the -name, and -iname options.

pwd : Prints the present working directory to the screen. The following example shows that
we are currently in the directory /home/barry:

barry@forensicbox:~$ pwd

/home/barry

file : Categorizes files based on what they contain using signature comparison. The cate-
gorization occurs regardless of name or extension. The file header is compared to a magic
file to determine the file type. Here’s an example using a standard JPEG image:

barry@forensicbox:~$ file mypic.jpg

mypic.jpg: JPEG image data, JFIF standard 1.02, aspect ratio, density 1x1,

segment length 16, progressive, precision 8, 720x960, components 3

ps : List current processes. This is a little like the task manager in Windows. It gives the
process ID number (PID) and the terminal on which the process is running. ps ax will show
all processes (a), including processes without an associated terminal (x). Note the lack of a
dash in front of the options. Read the man page for more details. The below output shows
the parent of all processes init and 3 virtual terminals running the bash shell (some output
removed).

barry@forensicbox:~$ ps

PID TTY STAT TIME COMMAND

1 ? Ss 0:00 init [4]

2 ? S 0:00 [kthreadd]

...

2446 pts/1 Ss 0:00 -bash

2495 pts/2 Ss+ 0:00 -bash

2563 ? I 0:00 [kworker/0:1-kdmflush]

2572 ? I 0:00 [kworker/3:2-rcu_gp]

2598 pts/3 Ss 0:00 -bash

strings : Prints out the readable characters from a file. This command will print out strings
that are at least four characters long (by default) from a file. Useful for looking at data files
without the originating program, and searching executables for useful strings, etc. More on
this forensically useful command later.

chmod : Changes the permissions on a file ("change mode"). We’ll cover this command and
its use later on.

50

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

chown : Changes the owner (and group) of a file much the same way chomd changes permis-
sions.

clear : Clears the terminal.

exit : Exits the terminal and closes it.

shutdown : This command will be used to cleanly exit the system and power down (or restart)
the computer. You can run several different options here (and be sure to check the man page
for additional details).

shutddown -r now - will reboot the system ’now’.

shutddown -h now - will shut down the system ’now’.

3.2 File Permissions

Files in Linux have certain specified permissions. These permissions can be viewed by running
the ls -l command on a directory or on a particular file. For example:

barry@forensicbox:~$ ls -l myfile.sh

-rwxr-xr-x 1 barry users 3685 Apr 15 11:14 myfile.sh

If you look close at the first 10 characters, you have a dash (-) followed by 9 more characters.
The first character describes the type of file. A dash (-) indicates a regular file. A "d" would
indicate a directory, and "b" a special block device, etc.

First character of ls -l output:

- = regular file
d = directory
b = block device (disk, volume, etc.)
c = character device (serial)
l = link (points to another file or directory)

The next 9 characters indicate the file permissions. These are given in groups of three:

Owner Group Others
rwx rwx rwx

The characters (referred to as ’bits’)indicate:

r = read

51

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

w = write
x = execute

So for the above myfile.sh we have: rwx r-x r-x

This gives the file owner read, write and execute permissions (rwx), but restricts other
members of the owner’s group and users outside that group to only read and execute the file
(r-x). Write access is denied as symbolized by the “-”.

Now back to the chmod command. There are a number of ways to use this command, including
explicitly assigning r, w, or x to the file. We will cover the octal method here because the
syntax is easiest to remember (and I find it most flexible). In this method, the syntax is as
follows:

chmod octal filename

For our purpose, the octal is a numerical value in which the first digit represents the owner,
the second digit represents the group, and the third digit represents others outside the
owner’s group. Each digit is calculated by assigning a value to each permission:

read (r) = 4

write (w) = 2

execute (x) = 1

For example, the file in our original example has an octal permission value of 755 (rwx = 7,
r-x = 5, r-x = 5). This means the owner of the file has all three bits set (read, write and
execute), while all others have only read and execute. If you wanted to change the file so
that only the owner had read, write and execute permissions, and members of the owner’s
group and all others would only be allowed to read the file, you would issue the command:

chmod 744 filename

(r=4) + (w=2) + (x=1) = 7 [owner]

(r=4) + (w=0) + (x=0) = 4 [group]

(r=4) + (w=0) + (x=0) = 4 [others]

Changing permissions and then displaying a new long list of the file would show:

barry@forensicbox:~$ ls -lh myfile.sh

-rwxr-xr-x 1 barry users 3685 Apr 15 11:14 myfile.sh (permission value is 755)

barry@forensicbox:~$ chmod 744 myfile.sh

barry@forensicbox:~$ ls -lh myfile.sh

52

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

-rwxr--r-- 1 barry users 3685 Apr 15 11:14 myfile.sh (permission value is now 744)

3.3 Pipes and Redirection

Linux (or more specifically bash) allows you to redirect the output of a command from the
standard output (usually the display or "console") to another device or file. This is done with
streams. There are three streams we will talk about: stdin is the standard input (usually
the keyboard); stdout is the standard output (usually the display); and stderr is standard
error (usually the display).

We use specific symbols to redirect these streams:

• stdin : <

– cmd < infile

– cmd is taking its input from infile rather than the keyboard.

• stdout : >

– cmd > outfile

– cmd is sending its output to outfile rather than the display.

• stderr : 2>

– cmd 2> errlog

– cmd is sending any error messages to the file errlog.

Manipulating streams can be useful for tasks like creating an output file that contains a list
of files on a mounted volume, or in a directory. For example:

barry@forensicbox:~$ ls -al > filelist.txt

The above command would output a long list of all the files in the current directory. You
won’t see the output, though. Instead of outputting the list to the console, a new file called
filelist.txt will be created that will contain the list. If the file filelist.txt already
exists, then it will be overwritten. Use the following command to append the output of the
command to the existing file, instead of over-writing it:

barry@forensicbox:~$ ls -al >> filelist.txt

53

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

Another useful tool is the command pipe, which uses the | symbol. The command pipe takes
the output of one command and "pipes" it straight to the input of another command.

In this case, we are redirecting the output to another command rather than a file. You can
see the difference below. I can echo a character string to a file with >, or I can echo to a
command with |. The wc command shown below gives a count of lines, words, and bytes.
In the first redirect below, I’m creating a file called h.txt with the output of echo. In the
second, I’m using a pipe, so the output of echo goes to the command wc. In the third, I’m
piping the output of echo to wc and redirecting the wc output to a file:

Follow along below, and experiment. DON’T do this logged in as root. Experimentation
can get out of hand quickly.

barry@forensicbox:~$ echo hello

hello

barry@forensicbox:~$ echo hello > h.txt

barry@forensicbox:~$ cat h.txt

hello

barry@forensicbox:~$ echo hello | wc

1 1 6

barry@forensicbox:~$ echo hello | wc > outfile.txt

barry@forensicbox:~$ cat outfile.txt

1 1 6

This is an extremely powerful tool for the command line. Look at the following process list
(partial output shown):

barry@forensicbox:~$ ps ax

PID TTY STAT TIME COMMAND

1 ? Ss 0:06 init [4]

2 ? S 0:00 [kthreadd]

4 ? I< 0:00 [kworker/0:0H]

6 ? I< 0:00 [mm_percpu_wq]

<continues>

What if all you wanted to see were those processes ID’s that indicated a bash shell? You
could "pipe" the output of ps to the input of grep, specifying bash as the pattern for grep

to search. The result would give you only those lines of the output from ps that contained
the pattern bash.

54

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

barry@forensicbox:~$ ps ax | grep bash

9434 pts/4 Ss 0:00 -bash

14746 pts/3 Ss 0:00 -bash

25354 pts/5 S+ 0:00 grep bash

The above output uses grep to display only those lines of ps output that contain the string
bash. So we can see that there are two bash sessions and a line that shows the process of our
actual grep command.

You may have noticed that when we redirect the output of a command to a file that we
don’t actually see the output on the screen unless we view the file we created. There may
be times where you want to see the output of a command displayed on the screen and have
it redirect to a file as well. You can do that using the tee command.

barry@forensicbox:~$ ls | tee filelist.txt

Desktop/

Documents/

Evidence/

winlog.txt

barry@forensicbox:~$ cat filelist.txt

Desktop/

Documents/

Evidence/

winlog.txt

In the above session, we’ve used the tee command to both display the output of the ls

command to the screen, and send it to a file called filelist.txt. In the context of a forensic
examination, this is useful to capture the output of tools in a log file (remember to use >>

to append).

Stringing multiple powerful commands together is one of the most useful and powerful tech-
niques provided by Linux (again, actually bash) for forensic analysis. This is one of the
single most important concepts you will want to learn if you decide to take on Linux as a
forensic platform. With a single command line built from multiple commands and pipes,
you can use several utilities and programs to boil down an analysis very quickly.

3.4 File Attributes

Linux file systems (like ext2, ext3, ext4) support what are called file attributes. There are
quite a few of them, and we will not cover all of them here. There are two that can be very
useful for protecting forensic data from haphazard deletion or tampering. These are append
only (a) and immutable (i).

55

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

Attributes are flags that can control what file operations are allowed to occur on a file or a
directory. Some of them can be changed by a normal user, and some cannot. We can list
the attributes of files and directories in our current directory with lsattr. In this case, we
are going to run the command on a particular file. Note that we are using root for this (you
can use the su command to become root, as we discussed earlier in section 1.5.2):

root@forensicbox:~# lsattr

--------------e----- ./myfile.txt

Here I am currently in the /root directory (signified by ~ in the prompt because /root is the
root user’s home). This output shows that of all the available attributes, this file has only
the extents attribute set. 5

We add and change (or remove) attributes with the chattr command, simply using a ’+’ to
add the attribute we want with the file name, or a ’-’ to remove it. For example, if I want
to make the file myfile.txt immutable, I can add the i attribute like this:

root@forensicbox:~# chattr +i myfile.txt

root@forensicbox:~# lsattr

----i---------e----- ./myfile

Now if I try to remove the file, even as root, I cannot because the file is immutable. Even
with the -f (force) option, the file cannot be removed:

root@forensicbox:~# rm -f myfile.txt

rm: cannot remove ’myfile.txt’: Operation not permitted

If I want to remove the file, I can use chattr -i myfile.txt to remove the immutable at-
tribute.

This can be useful if you have forensic images or other evidence you want to protect from
accidental change/removal. Attributes can also be set on directories. With the immutable
attribute set on a directory, it cannot be removed and files contained in it cannot be changed
or removed.

Now let’s have a look at the append only attribute. Consider a file we’ll call notes.txt that
we are redirecting output to. We don’t want to accidentally overwrite the file while adding
command output, so we set the append only attribute. Have a look at the following session:

5Extents are a method of mapping physical blocks of data in a contiguous fashion. We will not cover
extents in this guide. Additional information can be found online.

56

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

root@forensicbox:~# lsattr

--------------e----- ./notes.txt

root@forensicbox:~# chattr +a notes.txt

root@forensicbox:~# lsattr

-----a--------e----- ./notes.txt

root@forensicbox:~# echo ’hello’ > notes.txt

-su: notes.txt: Operation not permitted

a single redirect (>) tries to overwrite

root@forensicbox:~# echo ’hello’ >> notes.txt

a double redirect (») appends and is sucessful

3.5 Command Line Math

When conducting an examination, you’ll often find yourself needing a quick way to make a
simple calculation (sector offset, etc.). We’re going to cover some basic ways to accomplish
this via the command line. We do this for two reasons: First is that it’s often easier to
include command line calculations without having to grab a mouse, open a GUI calculator
and type in the numbers – why not just type in the terminal and get your answer? Second,
you may find yourself needing to use a terminal session or system that has no GUI. You
might as well learn how to use the command line for as much as you can and not rely on
external resources. There are a number of ways to do this:

3.5.1 bc - the Basic Calculator

If we need to do some calculations on the command line, we can use bc and either open an
interactive session, or pipe the expression to be evaluated via the echo command through
bc. You’ll need these techniques to calculate byte offsets in later exercises. You don’t want
to have to open a calculator app, do you?

For an interactive session, simply type bc at the prompt and you will be dropped into the
session. Type the expression and hit <enter>. Input below is in bold for clarity.

barry@forensicbox:~$ bc

bc 1.07.1

Copyright 1991-1994, 1997, 1998, 2000, 2004, 2006, 2008, 2012-2017

Free Software Foundation, Inc.

This is free software with ABSOLUTELY NO WARRANTY.

For details type ‘warranty’.

57

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

2+2

4

512*1000

512000

5/3

1

quit

Type quit to finish, and you’ll exit the session. Pay close attention to the last expression,
5/3. Note that the response is 1, a whole number, rather than the fraction we would assume.
This is because bc is a fixed precision calculator, and the default scale is 1. You can set the
scale with the scale=x function, where x is the precision you’d like. If you want your answer
rounded to two decimal places, you can use scale=2.

barry@forensicbox:~$ bc

bc 1.07.1

Copyright 1991-1994, 1997, 1998, 2000, 2004, 2006, 2008, 2012-2017

Free Software Foundation, Inc.

This is free software with ABSOLUTELY NO WARRANTY.

For details type ‘warranty’.

scale=2

5/3

1.66

quit

Here we see our expected result. You can also invoke bc -l, which sets additional functions,
but the scale is set to 20 by default, and you’d normally want to set a smaller scale anyway.

If you’d prefer not to use an interactive session, you can pipe your expression to bc using
echo:

barry@forensicbox:~$ echo 5/3 | bc

1

barry@forensicbox:~$ echo "scale=2; 5/3" | bc

1.66

barry@forensicbox:~$

echo 2048*512 | bc

1048576

The above example shows both the default output and scale setting via echo. The last
command shows a common calculation for byte offset when given a sector number (or sector
offset) in forensic work. We will use this frequently in later chapters.

58

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

Finally, we can use bc to convert hexadecimal values to decimal values by using the option
ibase=16, either interactively or via echo. Note that alpha characters in the hex expression
MUST be upper case for bc to work. Here are a couple of examples (again our interactive
input is in bold):

barry@forensicbox:~$ bc

bc 1.07.1

Copyright 1991-1994, 1997, 1998, 2000, 2004, 2006, 2008, 2012-2017

Free Software Foundation, Inc.

This is free software with ABSOLUTELY NO WARRANTY.

For details type ‘warranty’.

ibase=16

4c

(standard_in) 2: syntax error <- note chars must be upper case

4C

76

quit

barry@forensicbox:~$ echo "ibase=16;4C | bc"

76

3.5.2 Bash Shell - Arithmetic Expansion

If you are dealing with simple integers (or hex conversion), and floating point or decimal
responses are not required, you can use more simple bash (shell) arithmetic expansion. This
is probably the quickest and easiest way to do calculations for simple addition or subtrac-
tion where integer volume offsets are needed and you are not likely to encounter fractional
evaluations. Note that you need to use the echo command to evaluate the expression, or the
evaluation itself will be interpreted by the shell as a command. Hexadecimal values should
be preceded by 0x (zero x) Here’s an example set of evaluations:

barry@forensicbox:~$ echo $((2048*512))

1048576

barry@forensicbox:~$ echo $((5/3))

1 <- note the integer response

barry@forensicbox:~$ echo $((0x4c))

76

barry@forensicbox:~$ echo $((0x4c-70))

6

For additional information, see man bash.

59

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

3.6 Bash ’globbing’

The bash shell also supports what many would call ’wildcards’. We refer to this as globbing
or file name expansion. Note that this is NOT the same as ’regular expressions’, although
they look very similar. Here are a couple to remember:

• * for multiple characters

• ? for single characters

• [] for sets or a range of characters

This can be a complicated but very powerful subject, and will require further reading... Refer
to "regular expressions" in your favorite Linux text, along with "globbing" or "file expan-
sion". There are important differences that can confuse a beginner, so don’t get discouraged
by confusion over what ’*’ means in different situations.

3.7 Command Review and Hints

1. The shell has a history list of previously used commands (stored in the file named
.bash_history in your home directory). Use the keyboard arrows to scroll through
commands you’ve already typed.

2. Command line editing is also supported. As above, use the arrow keys to see and edit
previous commands so you don’t need to retype long commands with errors...just edit
them.

3. Commands and filenames are CASE SENSITIVE

4. Learn output redirection for stdout and stderr (> and 2>)

5. Linux uses / for directories, Windows uses \.

6. Use q to quit from less or man sessions.

7. To execute commands in the current directory (if the current directory is not in your
PATH), use the syntax ./command. This tells the shell to look in the present directory
for the command. Unless it is explicitly specified, the current directory is NOT part
of the normal user path.

60

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

4 Editing with Vi

There are a number of terminal mode (non-GUI) text editors available in Linux, including
emacs and vi. You could always use one of the available GUI text editors in an X session,
but what if you are unable to start X, or a windowing system is not available? The benefit
of learning a text editor like vi is your ability to use it from a terminal or a telnet or ssh
connection, etc. We are discussing vi here. (I don’t do emacs :-)). vi in particular is useful,
because you will find it on all versions of Unix. Learn the basics of vi and you should be
able to edit a file on any Unix system.

4.1 The Joy that is vi

You can start vi either by simply typing vi at the command prompt, or you can specify the
file you want to edit with vi filename. If the file does not already exist, it will be created
for you.

vi consists of two operating modes, normal mode and insert mode. When you first enter vi

you will be in normal mode. Normal mode allows you to search for text, move around the
file, and issue commands for saving, save-as, and exiting the editor (as well as a whole host
of other functions). Insert mode is where you actually input and change text.

In order to switch to insert mode, type either a (for append), i (for insert), or one of the
other insert options listed on the next page. When you do this you will see --INSERT--

appear at the bottom of your screen (in most versions). You can now input text. When you
want to exit the insert mode and return to normal mode, press the escape key.

You can use the arrow keys to move around the file in command mode. The vi editor was
designed, however, to be exceedingly efficient, if not intuitive. The traditional way of moving
around the file is to use the qwerty keys right under your finger tips. More on this below. In
addition, there are a number of other navigation keys that make moving around in vi easier,
like using $ to move to the end of the current line or w to move to the next word, etc.

If you lose track of which mode you are in, hit the escape key twice. You will know that you
are in normal mode. There is normally an indicator of your current mode at the bottom of
the window.

4.2 The vimtutor Tutorial

In most Linux distributions, vi is usually a link to some newer implementation of vi, such
as vim (vi improved), elvis or neovim. If your distribution includes vim, it should come with
a nice tutorial. It is worth your time. Try typing vimtutor at a command prompt. Work

61

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

through the entire file. This is the single best way to start learning vi. The navigation keys
mentioned above will become clear if you use vimtutor.

4.3 vi Command Summary

Entering edit mode from normal mode:

i : insert text under the cursor
a : append text after the cursor
o (the letter ’oh’) : open a new line under the current line (in insert mode)
O (uppercase ’oh’) : open a new line above the current line (in insert mode)

Normal Mode:

0 (zero) : move the cursor to the beginning of the line
$: move the cursor to the end of the line
x : delete (cut) the character under the cursor
X : delete (cut) the character before the cursor
dd : delete (cut) the entire line the cursor is on
dw : delete (cut) to the end of the current word
v : enter visual mode (select with cursor)
y : yank (copy)
yw : yank (copy) to the end of the current word
y$: yank (copy) to the end of the current line
p : paste after the cursor
P : paste before the cursor
:w : save and continue editing
:wq : save and quit
:wq! : save and quit without prompt
:q! : quit and discard changes
:w fname : save as fname

gg : go to the top of the file (first line)
G : go to the end of the file (last line)
G<NUM> : go to line number <NUM>

The best way to save yourself from a messed up edit is to hit the escape key followed by :q!.
That command will quit without saving changes.

Another useful feature in normal mode is the string search. To search for a particular string
in a file, make sure you are in normal mode and type

/string

62

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

Where string is your search target. After issuing the command, you can move on to the
next hit by typing n.

vi is an extremely powerful editor. There are a huge number of commands and capabilities
that are outside the scope of this guide. See man vi for more details. Keep in mind there are
chapters in books devoted to this editor. There are also complete books devoted to vi alone.
The forensic importance of vi is that you never know when you will find yourself responding
to a Unix machine, at a terminal, and needing to change a file. vi will almost certainly be
there for you.

63

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

5 The Linux Boot Sequence (Simplified)

This guide is intended to be an introduction to Linux as a platform for digital forensics, not
just a tutorial on available tools. One of the important aspects of using and maintaining
forensic platforms (and the tools that run on them) is a basic knowledge of the operation
of that platform. We pursue this knowledge so that we have a better understanding of our
system baseline. This allows us to troubleshoot errors or to track changes that are made
to the system over time. Knowing how your platform operates and how to add, remove or
change running processes is a fundamental skill in administering your own forensic platform.

As long as we are learning Linux, we might as well educate ourselves on core system functions
that may help us should we come across a Linux machine that must be investigated. Knowing
how to traverse the directory structure or issue commands is not good enough. Our ability
to use Linux as either a platform for forensics or as the subject of an analysis is very much
reliant on our overall knowledge of the operating system. Knowing that there are plenty of
online resources to dive into specific systems and distributions, we will only provide a simple
introduction here.

5.1 Init vs. Systemd

As with many of the Linux core components, system initialization (or ’init’) and service man-
agement have seen some drastic changes over the years. Some distributions, like Slackware,
have stayed with tried and true BSD or SystemV init and service management systems.
Other distributions, like Fedora and Ubuntu, have moved on to newer system and service
management systems. One of these newer systems is called Systemd. There are other system
initialization programs, like openrc and runit, but since this guide is written around Slack-
ware, we will stick to describing SysV/BSD style init in detail, and briefly describe Systemd
as a popular alternative.

5.2 Booting the Kernel

First, however, we need to discuss some other complexities that have been introduced over
the years. With the introduction of the Unified Extensible Firmware Interface (UEFI), we
find ourselves moving away from traditional BIOS booting, although most systems offer it
as a ’legacy’ option. This has resulted in a requirement for us to pay attention to how our
computer boots. Traditional bootloaders may not work under UEFI, and many distributions
have moved toward more flexible options.

Once again, one way to experiment with Linux without the pain of hardware compatibility
issues is to use virtualisation. There are free options out there and you won’t need to worry
about hardware compatibility or UEFI vs. legacy BIOS.

64

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

The first step in the (simplified) boot up sequence for Linux is loading the kernel. The
kernel image is usually contained in the /boot directory. It can go by several different
names, including bzImage or vmlinuz. Sometimes the kernel image will specify the kernel
version contained in the image, i.e. vmlinuz-huge-4.4.19 Very often there is a soft link (like
a shortcut) to the most current kernel image in the /boot directory. It is normally this
soft link that is referenced by the boot loader, LILO (or GRUB, eLILO, etc.). In a stock
Slackware system, the kernel image is /boot/vmlinuz.

Note that Slackware uses LILO or eLILO (for UEFI systems) by default. LILO and eLILO
are older and far simpler systems for booting, but are somewhat less flexible. The boot
loader specifies the ’root device’, along with the kernel version to be booted. For example,
with LILO, this is all controlled by the file /etc/lilo.conf. Each image= section represents
a choice in the boot screen.

This is an example of a lilo.conf:

root@forensicbox:~# cat /etc/lilo.conf

append=" vt.default_utf8=0"

boot = /dev/sda <- our boot device

bitmap = /boot/slack.bmp

bmp-colors = 255,0,255,0,255,0

bmp-table = 60,6,1,16

bmp-timer = 65,27,0,255

prompt

timeout = 1200

change-rules

reset

vga = normal

image = /boot/vmlinuz <- the kernel image we are booting

root = /dev/sda1 <- the partition we boot from

label = Linux

read-only

The actual boot configuration file on your system (/etc/lilo.conf,
/boot/grub/grub.cfg, etc.) will be far more complex in most cases. In this example, com-
ments in the file (lines starting with a #) have been removed for readability. And unless
you are running in something like a very simple virtual environment you may have other
bootable entries or rescue fallback options as well.

Once the system has finished booting, you can replay the kernel messages that scroll quickly
past the screen during the booting process with the command dmesg. We discussed this
command a little when we talked about device recognition earlier. The output can be piped
through a paging viewer to make it easier to see (in this case, dmesg is piped through less

on my Slackware system):

65

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

root@forensicbox:~# dmesg | less

[0.000000] Command line: BOOT_IMAGE=/vmlinuz-huge-4.14.20 root=/dev/nvme0n1p2

↪→ ro

[0.000000] x86/fpu: Supporting XSAVE feature 0x001: ’x87 floating point

registers’

[0.000000] x86/fpu: Supporting XSAVE feature 0x002: ’SSE registers’

[0.000000] x86/fpu: Supporting XSAVE feature 0x004: ’AVX registers’

[0.000000] x86/fpu: Supporting XSAVE feature 0x008: ’MPX bounds registers’

[0.000000] x86/fpu: Supporting XSAVE feature 0x010: ’MPX CSR’

[0.000000] x86/fpu: xstate_offset[2]: 576, xstate_sizes[2]: 256

[0.000000] x86/fpu: xstate_offset[3]: 832, xstate_sizes[3]: 64

[0.000000] x86/fpu: xstate_offset[4]: 896, xstate_sizes[4]: 64

[0.000000] x86/fpu: Enabled xstate features 0x1f, context size

is 960 bytes, using ’compacted’ format.

[0.000000] e820: BIOS-provided physical RAM map:

5.3 System Initialization

After the boot loader initiates the kernel, the next step in the boot sequence starts with the
program /sbin/init. This program really has two functions:

• initialize the runlevel and startup scripts

• terminal process control(respawn terminals)

In short, the init program is controlled by the file /etc/inittab. It is this file that controls
your runlevel and the global startup scripts for the system. This is, again, for a Slackware
system. Some systems, like Ubuntu, for example, use systemd for system control and config-
uration. If you are interested in the system startup routine for your particular distro (and
you should be interested), then research it online.

5.4 Runlevel

The runlevel is simply a description of the system state. For our purposes, it is easiest to
say that (for Slackware, at least. Other systems, such as those using systemd, will differ):

• runlevel 0 = shutdown

• runlevel 1 = single user mode

• runlevel 3 = full multiuser mode: text login (DEFAULT)

66

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

• runlevel 4 = full multiuser mode: X11 graphical login

• runlevel 6 = reboot

In the file /etc/inittab you will see a line similar to:

id:3:initdefault:

root@forensicbox:~# cat /etc/inittab

...

These are the default runlevels in Slackware:

0 = halt

1 = single user mode

2 = unused (but configured the same as runlevel 3)

3 = multiuser mode (default Slackware runlevel)

4 = X11 with KDM/GDM/XDM (session managers)

5 = unused (but configured the same as runlevel 3)

6 = reboot

Default runlevel. (Do not set to 0 or 6)

id:3:initdefault:

System initialization (runs when system boots).

si:S:sysinit:/etc/rc.d/rc.S

...

It is here in /etc/inittab that the default runlevel for the system is set. If you want a text
login, set the above value in initdefault to 3. This is the default for Slackware. With this
default runlevel, you use startx to get to the X Window GUI system. If you want a graphical
login, you would edit the above line to contain a 4.

Note that for Ubuntu, you can create an /etc/inittab file and place the value in there. If
it exists, the file will be read and the runlevel changed accordingly. The systemd style of
management used by Ubuntu does not really utilize "runlevels". It utilizes targets. Changes
to these targets are made using the systemctl command. The configuration and use of
Ubuntu is outside the scope of this guide, but this particular issue highlights the fact that
Linux systems can vary in how they work.

5.5 Global Startup Scripts

After the default run level has been set, init (via /etc/inittab) then runs the following
scripts:

67

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

• /etc/rc.d/rc.S - handles system initialization, file system mount and check, encrypted
volumes, swap initialization, devices, etc.

• /etc/rc.d/rc.X - where X is the run level passed as an argument by init. In the case of
multi-user (non GUI) logins (run level 2 or 3), this is rc.M. This script then calls other
startup scripts (various services, etc.) by checking to see if they are "executable".

• /etc/rc.d/rc.local - called from within the specific run level scripts, rc.local is a
general purpose script that can be edited to include commands that you want started
at boot up.

• /etc/rc.d/rc.local_shutdown - This file should be used to stop any services that were
started in rc.local. Create the file and make it executable to have it run.

5.6 Service Startup Scripts

Once the global scripts run, there are "service scripts" in the /etc/rc.d/ directory that are
called by the various runlevel scripts, as described above, depending on whether the scripts
themselves have "executable" permissions. This means that we can control the boot time
initialization of a service by changing it’s executable status. More on how to do this later.
Some examples of service scripts are:

• /etc/rc.d/rc.inet1 - handles network interface initialization

• /etc/rc.d/rc.inet2 - handles network services start. This script organizes the various
network services scripts, and ensures that they are started in the proper order.

• /etc/rc.d/rc.wireless - handles wireless network card setup.

• /etc/rc.d/rc.sendmail - starts the mail server.

• /etc/rc.d/rc.sshd - starts the OpenSSH server.

• /etc/rc.d/rc.messagebus - starts d-bus messaging services.

• /etc/rc.d/rc.udev - populates the /dev directory with device nodes, scans for devices,
loads the appropriate kernel modules, and configures the devices.

Have a look at the /etc/rc.d directory for more examples. Note that in a standard Slackware
install, your directory listing will show executable scripts as green in color (in a terminal
with color support) and followed by an asterisk (*).

Again, this is Slackware specific. Other distributions differ (some differ greatly!), but the
concept remains consistent. Once you become familiar with the process, it will make sense.
The ability to manipulate startup scripts is an important step in your Linux learning process.
At the very least, understanding how your system works and where services are started and
stopped is important.

68

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

5.7 Bash

bash (Bourne Again Shell) is the default command shell for most Linux distros. It is the
program that sets the environment for your command line experience in Linux. There are a
number of shells available, but we will cover bash, the most commonly used in Linux, here.
Shells like zsh and fish are gaining some popularity as well. Once you begin to realize the
power of the shell, you can begin to explore some of the other options and their benefits.

There are actually quite a few files that can be used to customize a user’s Linux experience.
Here are some that will get you started.

• /etc/profile - This is the global bash initialization file for login shells. Edits made to
this file will be applied to all bash login shell users. In simple terms, and interactive
login shell is generally one in which you authenticate your user, and then interact with
the shell. An example of this is when you log into the system at runlevel 3, or when
you open an ssh session on a remote computer.This file sets the standard system path,
the format of the command prompt and other environment variables.

• /home/$USER/.bash_profile6 - This file is located in each user’s home directory and is
also sourced by bash when an login shell is opened, and allows for customizations.

• /home/$USER/.bashrc - This file is sourced by bash for non login shells. An example is
opening a terminal window on a desktop. Editing this file allows the user to customize
their own environment. It is in this file that you can add aliases to change the way
commands respond.

• /home/$USER/.bash_history - This is an exceedingly useful file for a number of reasons.
It stores a set number of commands that have already been typed at the command line.
These are accessible simply by using the "up" arrow on the keyboard to scroll through
the history of already-used commands. Instead of re-typing a command over and over
again, you can access it from the history. From the perspective of a forensic examiner,
if you are examining a Linux system, you can access each user’s (don’t forget root)
.bash_history file to see what commands were run from the command line. Remember
that the leading "." in the file name signifies that it is a hidden file.

Keep in mind that the default values for ./.bash_history (number of entries, history file
name, etc.) can be controlled by the user(s). Read man bash for more detailed info.

The bash startup sequence is actually more complicated than this, but this should give
you a starting point. The man page for bash is an interesting (and long) read, and will
describe some of the customization options. In addition, reading the man page will give a
good introduction to the programming power provided by bash scripting. When you read

6In bash we define the contents of a variable with a dollar sign. $USER is a variable that represents the
name of the current user. To see the contents of shell individual variables, use echo $VARNAME.

69

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

the man page, you will want to concentrate on the INVOCATION section for how the shell is
used and basic programming syntax.

5.7.1 Consistent login and non-login shell behavior

On some systems you may notice that opening a terminal window for the first time shows
a very generic command prompt. On Slackware, for example, opening a terminal from the
XFCE desktop for the first time will give a prompt that looks like this:

Figure 4: XFCE default terminal prompt

This is because terminals opened from and X desktop are generally non login shells. As a
result, the bash profile is not applied. There are two general ways to remedy this (many
distributions do this for you):

1. Configure the terminal to be a login terminal

2. Add the appropriate .bash configuration files

You only need to do one of the above to get a consistent shell experience. Adding the
appropriate bash configuration files is generally the preferred method, since you will likely
want to create these files for additional customization later anyway.

For the first method, it’s simply a matter of entering the terminal program’s preferences
(Edit --> Preferences --> General in the XFCE terminal), and checking the appropriate
box for Run command as login shell:

70

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

Figure 5: XFCE terminal preferences

Without any other changes, this will result in a login shell that reads /etc/profile and (if
it exists) .bash_profile. Close and re-open the terminal window. Now your prompt looks
like this:

Figure 6: XFCE login terminal

71

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

The second method is preferable because it will result in consistent configuration regardless
of the invocation of login or non-login shells. In this case, we will simply create both the
.bash_profile and .bashrc files and ensure that each is sourced regardless of the shell type.

Create the two files with the following contents:

Contents of .bash_profile:

if [-f ~/.bashrc]; then

source ~/.bashrc

fi

This tests to see if .bashrc exists, and if it does, then read the contents (referred to as
"sourcing".)

Contents of .bashrc:

source /etc/profile

Similarly, this makes sure that /etc/profile is always read for non-login shells (and that file
should always exist, so there’s no test needed).

With these two files in place, you can add any additional customizations to your .bashrc,
and be assured that they will apply to all login and non-login shells.

72

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

6 Linux Network Basics

In this section we are going to explore some very basic network tools and provide an overview
of how to locate yourself on a network and explore your workstation’s various network inter-
faces and connections.

There are a huge number of resources available to research and learn Linux networking - from
basic to advanced - we include it in this guide to ensure we cover the minimal basics. Later
on in this guide, we’ll be covering some network ’investigation’ tools. As such, a limited
introduction to how networking generally works on Linux is useful.

We’ll be looking at Linux networking from a workstation perspective. There are many tools
and utilities available on any distribution that are useful for full network administration with
many more available in various software repositories. Over the years many of the built-in
network utilities have been improved upon and forked for a wide range of use cases and
network architecture. This will be a ’scratch the surface’ overview.

Linux is built on a very robust TCP/IP stack (just think ’networking’). This stems from
the very early days of Linux when Unix was king of networking and the Linux TCP/IP
implementation was meant to be fully compatible with current (at the time) Unix (BSD)
network sockets and protocols. This has made Linux an excellent networking operating
system since its earliest incarnations and makes it the useful operating system it is today
for so many applications, from mobile devices to embedded systems in automobiles and
appliances.

Here we will provide a brief overview of the following:

• network interfaces

• simple network configuration

– initial setup
– static IP
– dynamic IP (DHCP)
– automatic network configuration (NetworkManager)

• identifying yourself on the network

• what you are presenting to the network

6.1 Network Interfaces

In order to begin our exploration of Linux network basics, we need to cover network inter-
faces. In simple terms, a network interface is the hardware that connects the Linux kernel

73

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

to network applications and the wider world. There are all sorts of interfaces, some virtual
and some physical. We’ll just mention three of them here as they are the most likely ones
you’ll see as you begin learning.

6.1.1 Ethernet Adapter [ethX]

If you are using either a desktop or laptop computer with a physical network cable plugged
into a port on you computer, you will most likely be using an Ethernet adaptor. If you are
using a virtual machine, then you are also most likely going to see an Ethernet adapter for
your main network connection in the VM, even if your host machine uses wireless networking.
These are normally named eth0 for the first physical connection, eth1 for the second, etc.

6.1.2 Wireless Adapter [wlanX]

Wireless adapters can include built in wireless network interfaces or external USB ’dongles’.
If you are using a wireless network, then most likely you will be using an interface called
wlan0. Again, if you are using a VM, you will most likely not see a wireless adapter in the VM
even if your host computer uses wireless - virtual machines normally bridge (or use network
address translation) from the host computer’s network to a standard Ethernet adapter on
the virtual guest operating system.

6.1.3 Loopback Interface [lo]

The loopback interface (lo) is a special interface that points to the host machine itself, with
an IP address of 127.0.0.1. Commonly referred to as "home" or "localhost", the loopback
device is most often used for network troubleshooting and to connect to services locally (the
CUPS printing system, for example).

6.1.4 Persistent Interface Naming

Some distributions using the newer systemd daemon might have different naming conventions.
If your network interfaces have names like enp1s0 (for Ethernet) or wlp2s0 (for wireless),
then you have a Linux distribution that uses the newer "persistent" naming conventions for
network devices. This has been introduced for a number of reasons, including maintain-
ing persistent interface names between reboots. More information on this system of nam-
ing can be found here: https://www.freedesktop.org/software/systemd/man/systemd.
net-naming-scheme.html

74

https://www.freedesktop.org/software/systemd/man/systemd.net-naming-scheme.html
https://www.freedesktop.org/software/systemd/man/systemd.net-naming-scheme.html

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

6.2 Network Configuration

When you install Linux, whether it be Slackware or virtually any other distribution, the
configuration of your network connections is generally taken care of automagically. It is,
however, a good idea to gain an understanding of how this is done and what goes on ’under
the hood’. What we’ll see here is a very simple overview of how you can check your network
interfaces and what you can expect to see.

For Slackware, the best detailed overview for network configuration basics (excluding Net-
workManager - which we’ll cover here) is the chapter on networking in the Slack Book
(https://www.slackbook.org/beta/#ch_network).

6.2.1 Initial Network Configuration

If you are using Slackware the installation routine would have run the netconfig program
for you. It would have looked something like this:

Figure 7: Installation - netconfig

Here is where we select how our computer will connect to available networks.

Selecting a static IP will result in your computer having the same ’fixed’ IP address on a
network. You’ll need to know a network compatible IP address to fill in, a default gateway
(for traffic to pass outside the local network), a netmask (to identify the subnet you are on),
and a nameserver (to interact with DNS services).

The two other choices we’ll cover here are far more likely to be used, and far easier to con-
figure. You can always re-run netconfig as root after installation to change your connection
method.

75

https://www.slackbook.org/beta/#ch_network

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

DHCP utilizes a ’Dynamic Host Control Protocol’ server to assign network settings automat-
ically. If you are running an Ethernet (hardwired) network with a DHCP server or router
(most commercial ISP routers come so equipped) you will find DHCP the easiest path to
take if you are not worried about changing connections.

Let’s have a look at where these two configurations (static or DHCP) are stored, and how
they differ. If you select either a static IP address or DHCP configuration, your settings
will be saved to the file /etc/rc.d/rc.inet1.conf. Note that this particular configuration
file is well commented. Read the top of the file for more details on how these settings are
interpreted. The following examples show the (truncated) contents of that file if you are
setting up an Ethernet interface.

For a static IP address, where you fill in the values for IP address, gateway, and broadcast
address yourself, the settings for eth0 under /etc/rc.d/rc.inet1.conf would look like this:

root@forensicbox:~# less /etc/rc.d/rc.inet1.conf

...

Config information for eth0:

IPADDR[0]="10.0.2.15"

NETMASK[0]="255.255.255.0"

IPALIASES[0]=""

USE_DHCP[0]=""

DHCP_HOSTNAME[0]=""

...

For a dynamic IP address (using DHCP), the same entry would look like this. All the entries
are blank except USE_DHCP:

root@forensicbox:~# less /etc/rc.d/rc.inet1.conf

...

Config information for eth0:

IPADDR[0]=""

NETMASK[0]=""

IPALIASES[0]=""

USE_DHCP[0]="yes"

DHCP_HOSTNAME[0]=""

...

The last choice in the list of network configuration options is to use NetworkManager. Net-
workManager is a program that will find and connect you to known networks. It works for
both wired (Ethernet) connections and for wireless networks. While using DHCP for an
Ethernet connection is trivial and easy to setup, wireless networks can be somewhat more
complex. Tools like wpa_supplicant allow you to locate and configure nearby wireless net-
works. Using NetworkManager, however, is much easier and allows for quick switching of
networks when moving from place to place and connecting to different hotspots.

76

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

But wait...We are talking about forensic workstations here. Why would we be concerned
about "connecting to different hotspots"? The short answer is that the nature of computer
forensics and incident response has changed in the past few years. It’s not uncommon now
to take mobile workstations (powerful laptops, for example) to search scenes or to incident
response locations. There may be a need to connect to a network to download tools or
conduct wireless reconnaissance in support of an investigation.

Once selected, NetworkManager will do the work of connecting and managing your interfaces
for you. When using it in a GUI, you will usually find an icon in the system tray or menu
bar that allows you to access available networks (if you know the passphrase).

Here are a couple of examples of what you might see - one on a computer running an XFCE
desktop with an Ethernet connection, and the second on a different desktop GUI connected
to a WiFi network:

Figure 8: NetworkManager - Ethernet connection

Figure 9: NetworkManger - Wireless connection

When selected to configure your network, NetworkManager is started via an rc script as
discussed in the chapter 5 section on system startup scripts. Since the NetworkManager rc

script has executable permissions set (octal 755), it is started when the system is booted.

root@forensicbox:~# ls -l /etc/rc.d/rc.networkmanager

-rwxr-xr-x 1 root root 2674 Jul 14 13:46 /etc/rc.d/rc.networkmanager*

77

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

NetworkManager overrides /etc/rc.d/rc.inet1.conf, and if you look in that file you’ll see
that values for interfaces are now empty:

root@forensicbox:~# less /etc/rc.d/rc.inet1.conf

...

Config information for eth0:

IPADDR[0]=""

NETMASK[0]=""

IPALIASES[0]=""

USE_DHCP[0]=""

DHCP_HOSTNAME[0]=""

...

6.3 Finding Yourself on the Network

With the network configuration completed and a basic understanding of how the process
works, it’s time to look at the tools that allow you to identify your IP address and other
network settings that show you how you are identified on the network, and how your traffic
is routed.

Knowing information about your network interface, gateway, MAC address, etc. is impor-
tant, especially in a mobile ’on scene’ environment where you might need to troubleshoot
your connection or connect to another device either inside or outside your local network
safely. Here again we are only covering the basics. This should give you a start and allow
you to research further for additional information should you need it.

6.3.1 What is my IP?

One of the most basic pieces of information available to you is your own IP address. There
are several ways to find out what IP address is assigned to your computer. Both the ifconfig

and the ip command will give you that information. But what’s the difference? First, let’s
have a look at how to use each to find your IP address, then we’ll discuss why we have two
commands that appear to do the same thing.

ifconfig has been around for a very long time. It can be used to view network interface
configurations, and can also be used to actually configure connections - bring an interface
up, or take it down; and assign IP addresses, default gateways, and broadcast addresses. In
it’s simplest form, we call the command to view our network configuration, using it with the
-a option to show all interfaces:

barry@forensicbox:~$ /sbin/ifconfig -a

eth0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500

78

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

inet 10.0.2.15 netmask 255.255.255.0 broadcast 10.0.2.255

inet6 fec0::ce66:702d:a37:87a0 prefixlen 64 scopeid 0x40<site>

inet6 fe80::4931:157b:7751:f5dc prefixlen 64 scopeid 0x20<link>

ether 52:54:00:12:34:56 txqueuelen 1000 (Ethernet)

RX packets 647 bytes 55423 (54.1 KiB)

RX errors 0 dropped 0 overruns 0 frame 0

TX packets 531 bytes 62222 (60.7 KiB)

TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

lo: flags=73<UP,LOOPBACK,RUNNING> mtu 65536

inet 127.0.0.1 netmask 255.0.0.0

inet6 ::1 prefixlen 128 scopeid 0x10<host>

loop txqueuelen 1000 (Local Loopback)

RX packets 4 bytes 240 (240.0 B)

RX errors 0 dropped 0 overruns 0 frame 0

TX packets 4 bytes 240 (240.0 B)

TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

Notice that ifconfig can be run as a normal user (for viewing interface information). You
just need to provide the full path to the command, since the executable resides in the /sbin

directory (for "system" binaries), but /sbin is not normally in a user’s PATH.

The line in the output above containing the network information is highlighted in red, in-
cluding the interface IP address ("inet"). Also, highlighted in blue, is the interface’s MAC
address 7. In this particular output we have a single Ethernet interface (eth0) with an
IP address (10.0.2.15). And the loopback interface (lo) with the expected IP address of
127.0.0.1.

We can obtain very similar information with the ip command. Using ip with the addr option
(or even just a), we can get the details on our running network interfaces:

barry@forensicbox:~$ /sbin/ip addr

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default

↪→ qlen 1000

link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

inet 127.0.0.1/8 scope host lo

valid_lft forever preferred_lft forever

inet6 ::1/128 scope host

valid_lft forever preferred_lft forever

2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP group

↪→ default qlen 1000

link/ether 52:54:00:12:34:56 brd ff:ff:ff:ff:ff:ff

inet 10.0.2.15/24 brd 10.0.2.255 scope global dynamic noprefixroute eth0

valid_lft 42209sec preferred_lft 42209sec

7A full network course is outside the scope of this guide. If you need more information on what a MAC
address is, and how it’s useful, please search the web - it’s good to know.

79

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

inet6 fec0::ce66:702d:a37:87a0/64 scope site dynamic noprefixroute

valid_lft 85907sec preferred_lft 13907sec

inet6 fe80::4931:157b:7751:f5dc/64 scope link noprefixroute

valid_lft forever preferred_lft forever

Again notice the line with the IP address highlighted in red and the MAC address highlighted
in blue. Similar output, different tool. So what’s the difference?

Put simply, the ip command is a newer and more versatile tool. It belongs to the iproute2

package and largely supersedes the ifconfig command (from the net-tools package). The
ip command extends the functionality of ifconfig, uses different system calls, and actually
simplifies network management. So which should you use? ifconfig or ip?

Normally I default to using the most "UNIX" like command we can find. ifconfig has been
a standard command on so many UNIX platforms over the years. I always suggest learning
standard tools over other network utilities because you can usually find them on any UNIX
system you might come across. Much like vi, you learn it because you will always find
it available. This is not really the case with network programs anymore. Even Solaris is
moving away from ifconfig to newer network utility implementations. So my suggestion is
you learn both ifconfig and ip and understand how to use each...you will likely find one or
both on any give *nix system.

Having said all that, one other "nice to know" utility is nmcli. If you are using Network-
Manager to manage your network connections and configurations, nmcli provides a nice
view of your configuration on its own. Here’s an example of nmcli output for a workstation
connected to a wireless network called Hivehom:

barry@forensicbox:~$ nmcli

wlan0: connected to Hivehom

"Ralink RT5372"

wifi (rt2800usb), 9C:EF:D5:FD:AA:CE, hw, mtu 1500

ip4 default

inet4 192.168.86.22/24

route4 0.0.0.0/0

route4 192.168.86.0/24

route4 192.168.86.0/24

inet6 fe80::721a:4d96:5207:6894/64

route6 fe80::/64

route6 ff00::/8

eth0: unavailable

"Intel 82579V"

Ethernet (e1000e), 10:BF:48:7F:79:A1, hw, mtu 1500

lo: unmanaged

"lo"

80

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

loopback (unknown), 00:00:00:00:00:00, sw, mtu 65536

DNS configuration:

servers: 192.168.86.1

domains: lan

interface: wlan0

So this gives us a pretty good idea of how we can find out where we sit on a network using
three different tools: ifconfig, ip, and nmcli. We’ll move on now to painting a picture of
what we present to the network.

6.4 Reviewing Network Connections and Ports

It’s always a good idea to know exactly what network ports you have open, and what network
services are running. Diagnosing network issues usually starts with simple commands like
ping. If you are unfamiliar with TCP ports and packets, please take some time to look them
up. They are not covered here as this guide assumes basic computer/networking knowledge.

ping is a command generally available across most - if not all - operating systems. It’s use
is simple. If you want to check your ability to connect, either to the outside world or to
a computer or device on your local network, you simply "ping" the IP address (or domain
name) and check for a response. For example, I have a computer on the local network that
I want to test my ability to reach via tools like ssh or netcat. I quickly ping the IP address
(10.0.2.2) to ensure the address is routable:

barry@forensicbox:~$ ping -c5 10.0.2.2

PING 10.0.2.2 (10.0.2.2) 56(84) bytes of data.

64 bytes from 10.0.2.2: icmp_seq=1 ttl=255 time=0.133 ms

64 bytes from 10.0.2.2: icmp_seq=2 ttl=255 time=0.243 ms

64 bytes from 10.0.2.2: icmp_seq=3 ttl=255 time=0.195 ms

64 bytes from 10.0.2.2: icmp_seq=4 ttl=255 time=0.253 ms

64 bytes from 10.0.2.2: icmp_seq=5 ttl=255 time=0.226 ms

--- 10.0.2.2 ping statistics ---

5 packets transmitted, 5 received, 0% packet loss, time 4102ms

rtt min/avg/max/mdev = 0.133/0.210/0.253/0.043 ms

In the above example, we are using ping with the -c option to specify the number ("count")
of packets being sent. Without -c the command would continue until it’s interrupted by the
user (using <cntrl>c).

In most cases, we use ping if we can’t connect to some network service on a given device.
Before troubleshooting the server application (or the client being used), ping will let us know

81

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

if the server is even available to us. If no response is received, we generally know there is a
physical connection issue, or perhaps a routing problem.

Eventually, you’ll want to know what ports are open (or if the port you are trying to connect
to is open, either on a remote computer or locally). For this we have netstat and ss. Similar
to ifconfig and ip, these tools come in the net-tools and iproute packages (respectively)
and ss is the newer more functional program of the two. When looking for help online,
you’ll see netstat mentioned far more frequently than ss. netstat has been around longer
and most people are used to it. Learn them both, and review what’s available on your
particular platform of choice.

The commands are simple and similar for both tools. If you want to view listening services
and established connections with netstat, you use the -a (all) option. To make the output
easier to read here, we’ll use the -t option to limit the list to TCP ports only (excluding
UDP) and the -4 option to list only IPv4 addresses 8. The options are strung together below:

barry@forensicbox:~$ netstat -at4

Active Internet connections (servers and established)

Proto Recv-Q Send-Q Local Address Foreign Address State

tcp 0 0 0.0.0.0:5656 0.0.0.0:* LISTEN

tcp 0 0 0.0.0.0:ssh 0.0.0.0:* LISTEN

tcp 0 36 10.0.2.15:ssh 10.0.2.2:43844 ESTABLISHED

The output above shows two listening (awaiting an connection) TCP ports. One is an Secure
Shell (ssh) server. This port also has an ESTABLISHED ssh connection from IP 10.0.2.2.
If you want to see the port numbers rather than the service name, use the -n option with
netstat. ssh has a know standard port (TCP/22), so the service name is listed.

The other open port is TCP/5656. There is no service name given here because it’s not a
know or standard port and so the service name cannot be determined. We’ll have a look at
how to address that in a moment.

For now, let’s look at ss command and see how it compares to netstat. We’ll actually be
using the exact same options for ss as we did in the previous command. -a to show all
(listening and established), -t to show only TCP connections, and -4 to show only IPv4.
And again, we’ll be combining the options together. If we issue the command as a normal
user, we’ll need to provide the full path since ss resides in /sbin rather than /bin (where
nestat is found on Slackware).

8Once again, if you need more information on TCP vs. UDP, or IPv4 vs. IPv6, be sure to follow up with
additional research. These are basic but important network concepts.

82

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

barry@forensicbox:~$ /sbin/ss -at4

State Recv-Q Send-Q Local Address:Port Peer Address:Port Process

LISTEN 0 1 0.0.0.0:5656 0.0.0.0:*
LISTEN 0 128 0.0.0.0:ssh 0.0.0.0:*
ESTAB 0 36 10.0.2.15:ssh 10.0.2.2:43844

And we see essentially the same output with ss as we did with netstat. A listening port and
established connection on TCP/22 (ssh) and a listening process on port 5656. One further
note here: You can view just the port numbers rather than the service name by passing the
-n option to both netstat and ss - that will prevent the service name to port resolution and
you’ll be given just the port number.

The output of both netstat and ss is shown to make you aware of both commands. Like
our previous ifconfig vs. ip commands, netstat and ss come from different packages, and
ss is the newer program. Suffice to say ss is faster and more capable. But again, you’ll see
netstat advice wherever you look for information on investigating open network sockets on
Linux.

Let’s go back to the listening process on TCP port 5656. We saw it in both the nestat and
ss output, and while TCP port 22 was resolved to the Secure Shell (ssh) service, there is no
additional information available on port 5656.9

If we have a listening process on an non-standard port, we need to be able to resolve that
listening port to a service or process. For this we can use the lsof command. lsof allows
us to link a program or service with an open network socket (or even an open file).

For open network ports, using lsof is quite simple. The -i option allows us to match IP
addresses and ports to our listing of open sockets. If we specify :<port>, then lsof will
match the open port without specifying an IP address. Here we’ll run the command with a
single TCP port as an argument (our unknown port 5656). We need to be root to run this
particular command.

root@forensicbox:~# lsof -i tcp:5656

COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME

nc 5313 root 3u IPv4 45995920 0t0 TCP *:5656 (LISTEN)

This tells us that we are ’listening’ on TCP port 5656 with the nc command. nc is the netcat

command. For now just understand that this is an open port on our computer, listening for
an incoming connection. We’ll learn more about the netcat (nc) command in chapter 8.8,
where we’ll learn about forensic imaging via netcat.

9Have a look at the file /etc/services for more information.

83

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

7 Configuring a Forensic Workstation

There are many excellent guides, books and websites out on the Internet that provide some
wonderfully detailed information on setting up a Linux installation for day to day use. We
are going to concentrate here on subjects of particular interest to setting up a secure and
usable forensic workstation.

As with the rest of this guide, the specific commands presented here are for a Slackware
installation. While the commands and capabilities provided by other distributions will dif-
fer somewhat (or greatly) the basic concepts should be the same. As always, check your
distribution’s documentation before running these commands on a non-Slackware system.
And let me reiterate. These are just the basics. The guidelines set forth in here offer only
a starting point for workstation configuration and security. If you are not using Slackware,
do not just skip this section...the information is useful regardless. This is not an exhaustive
manual on security and configuration. It is simply the basics to get you started.

7.1 Securing the Workstation

These next few sections on start up scripts, tcpwrapper and iptables are covered in detail
in Slackware documentation (the Slack Book, for example) and elsewhere for other distri-
butions. I’m going to mention them here so that the reader gets a baseline understanding
of these subjects. The details can be found through further reading. Again, take note that
even if you are not using Slackware, and your distribution of choice is not configured as I’m
about to describe, it’s still worth following along, as the subject of determining open network
ports and tracing what service they belong to is an important one.

Anyone who has been working in the field of digital and computer forensics for any length
of time can tell you that forensic workstation security is always a top priority. Some prac-
titioners work on completely “air gapped” forensic networks with no connection to outside
resources. Others find this approach too limiting and elect to heavily firewall and monitor
forensic workstations while allowing some level of access to external networks. In either case,
understanding your workstation’s security posture is extremely important. This document
does not endorse or suggest any particular approach, and as with all things in this business,
the requirements for your particular setup may change day to day depending on the nature
of the cases you are working on, the evidence you are handling, the physical or network
environment you are working in and the policies set forth by your agency or company.

The goal here is to ensure that, at a minimum, a forensic examiner understands the current
security posture of the workstation, or at the very least, is conversant in addressing them.
This section is not meant to imply, in any way, that simple host based security is enough to
protect your forensic environment. The ideal lab will have edge routers and hardware based
appliances to properly secure data and network access. In some cases, contraband analysis
and malware investigation for example, air gapping may be the only realistic solution. In

84

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

any event, understanding the mechanics of host based security is an often overlooked, but
important part of the forensic environment.

7.1.1 Configuring Startup Services

We’ll start our security configuration with the most basic steps...disabling services (and/or
daemons) that start when the computer boots. It’s fairly common knowledge that run-
ning programs and network services that you are not using and do not need serves only
to introduce potential vulnerabilities. There are all sorts of services running on any given
workstation, regardless of distribution or operating system. Some of these services are re-
quired, some are optional, and some are downright undesirable for a forensic environment.
As previously discussed, this is where you will find quite a difference among the various
distributions. Consult your distribution’s documentation for more info, and don’t neglect
this part of your Linux education!

Previously, we discussed the system initialization process. Part of that process is the execu-
tion of rc scripts that handle system services. Recall that the file /etc/inittab invokes the
appropriate run level scripts in the /etc/rc.d/ directory. In turn, these scripts test various
service scripts, also in the /etc/rc.d/ directory, for executable permissions. If the script is
executable, it is invoked and the service is started. This can be chained, where rc.M checks
to see if an rc script is executable, and if so the execution of that script checks for more
scripts that are executable. For example, the test inside the rc.M (multiuser init script) that
will run the network daemons initialization script (rc.inet2) looks like this (abbreviated):

root@forensicbox:~# cat /etc/rc.d/rc.M

...

Start networking daemons:

if [-x /etc/rc.d/rc.inet2]; then

/etc/rc.d/rc.inet2

fi

...

The code shown above is an if / then statement where the brackets signify the test and the
-x checks for executable permissions. So it would read:

if the file /etc/rc.d/rc.inet2 is executable, then execute the script /etc/rc.d/rc.inet2

Once rc.inet2 is running, it checks the executable permissions on the network service scripts
(among other things). This allows us to control the execution of scripts simply by changing
the permissions. If an rc script is executable, it will run. If it is not executable then it
is passed over. As an example, let’s have a look at the OpenSSH (secure shell) portion of
rc.inet2:

root@forensicbox:~# cat /etc/rc.d/rc.inet2

85

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

...

Start the OpenSSH SSH daemon:

if [-x /etc/rc.d/rc.sshd]; then

echo "Starting OpenSSH SSH daemon. /usr/sbin/sshd"

/etc/rc.d/rc.sshd start

fi

...

Again, this portion of rc.inet2 checks to see if rc.sshd is executable. If it is, then it runs
the command /etc/rc.d/rc.sshd start. The rc service scripts can have either start, stop
or restart passed as arguments in most cases. So, in summary for this particular example:

• /etc/inittab calls /etc/rc.d/rc.M

• /etc/rc.d/rc.M calls /etc/rc.d/rc.inet2 (if rc.inet2 is executable)

• /etc/rc.d/rc.inet2 passes the command /etc/rc.d/rc.sshd start (if rc.sshd is exe-
cutable)..

Earlier on we discussed file permissions. Now let us look at a practical example of changing
permissions for the purpose of stopping select services from starting at boot time. A look
at the permissions of /etc/rc.d/rc.sshd shows that it is executable, and so will start when
rc.inet2 runs:

root@forensicbox:~# ls -l /etc/rc.d/rc.sshd

-rwxr-xr-x 1 root root 1814 Oct 1. 2018 /etc/rc.d/rc.sshd*

To change the executable permissions to prevent the SSH service to start at boot time, I
execute the following:

root@forensicbox:~# chmod 644 /etc/rc.d/rc.sshd

root@forensicbox:~# ls -l /etc/rc.d/rc.sshd

-rw-r--r-- 1 root root 1814 Oct 1. 2018 /etc/rc.d/rc.sshd

The directory listing shows that I have changed the executable status of the script, and
therefore prevented the service from starting when the system boots. Depending on your
color terminal settings, you may also see the color of the file name change in a listing.

You can use this technique to go through your /etc/rc.d directory to turn off those services
that you do not need. Since I’m not running an old laptop, and don’t need PCMCIA services
nor do I have wireless network support on my workstation, I’ll make sure these do not have
executable permissions:

86

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

root@forensicbox:~# chmod 644 /etc/rc.d/rc.pcmcia

root@forensicbox:~# chmod 644 /etc/rc.d/rc.wireless

If you want to know what each script does, or if you are unsure of the purpose of a service
started by a particular rc script, just open the script with your paging program (less, for
instance) and read the comments (lines starting with a #). Turning off a service you need is
just as bad as leaving an unneeded service running. Learn what service each script starts,
and why, and enable or disable accordingly.

For example, here’s the comments at the beginning of /etc/rc.d/rc.yp:

root@forensicbox:~# less /etc/rc.d/rc.yp

#!/bin/sh

/etc/rc.d/rc.yp

#

Start NIS (Network Information Service). NIS provides network-wide

distribution of hostname, username, and other information databases.

After configuring NIS, you will either need to uncomment the parts

of this script that you want to run, or tweak /etc/default/yp

#

NOTE: for detailed information about setting up NIS, see the

documentation in /usr/doc/yp-tools, /usr/doc/ypbind,

/usr/doc/ypserv, and /usr/doc/Linux-HOWTOs/NIS-HOWTO.

...

I would suggest leaving sshd running (via the /etc/rc.d/rc.sshd script). Even if you do not
think you will use SSH, as you become more proficient with Linux, you will find that SSH,
the “secure shell”, becomes an important part of your toolbox.

7.1.2 Host Based Access Control

We continue our baseline security configuration discussion with a word on simple host based
access control. Note that this is NOT a firewall. This is access control at the host level. In
very simple terms, we can control access to our system with two files, /etc/hosts.deny and
/etc/hosts.allow.

For illustration purposes, let’s make sure we can connect from an external host to our forensic
workstation via SSH. Remember, we left the rc.sshd script executable, so the service started
when our computer booted, and at this point we have not set any access controls.

The below command results in a successful connection as user barry from the external host
hyperion to our forensic workstation forensicbox. Note the change in the command prompt

87

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

on the last line:

barry@hyperion:~$ ssh -l barry 192.168.86.83

barry@192.168.86.83’s password:

Last login: Mon Sep 7 13:21:20 2020 from 192.168.86.4

Linux 5.4.58.

barry@forensicbox:~$

We are now logged into our forensic workstation (forensicbox) from a different computer
(hyperion).

As previously mentioned, there are two access control files we will use. These are
/etc/hosts.deny, which sets the system wide default policy for access denial, and
/etc/hosts.allow, which can then be used to poke holes in the denied connections. Both of
these files take on the same basic syntax:

services:systems

We start with /etc/hosts.deny and use it to deny all incoming connections to all services.
We do this by editing the file and adding the string ALL:ALL on one single line. When you
first open the file for editing, you’ll notice that there are no lines that do not start with a
sign. That means the entire file is just comments with no real content. Once we add our
single line, it will look like this:

root@forensicbox:~# cat /etc/hosts.deny

#

hosts.deny This file describes the names of the hosts which are

not allowed to use the local INET services, as decided

by the ’/usr/sbin/tcpd’ server.

#

Version: @(#)/etc/hosts.deny 1.00 05/28/93

#

Author: Fred N. van Kempen, <waltje@uwalt.nl.mugnet.org

#

#

ALL:ALL <- The line we added

End of hosts.deny.

Now any incoming connections will be denied. Note that this in NOT a firewall. It is simply
access control to services running on the current system. Since this is hosts.deny, we are
simply saying “DENY all connections from all hosts”.

88

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

When we try and ssh into our workstation from an external host, we get no connection:

barry@hyperion:~$ ssh -l barry 192.168.86.83

kex_exchange_identification: Connection closed by remote host

Connection closed by 192.168.86.83 port 22

Once again, in the example above, I’m trying to log into my forensic workstation, forensicbox
from the computer hyperion). The connection is denied.

Now that we have set a “default deny” policy, let’s poke a hole in the scheme by adding an
allowed service in. We’ll continue to use sshd as an example, since I like having access via
SSH and will leave it open anyway.

To allow access to a service, we edit the /etc/hosts.allow file and add a line for each service
in the same services:systems format.

When we add an SSH exception for our local network to hosts.allow, our sshd exception
will look like this:

root@forensicbox:~# cat /etc/hosts.allow

#

hosts.allow This file describes the names of the hosts which are

allowed to use the local INET services, as decided by

the ’/usr/sbin/tcpd’ server.

#

Version: @(#)/etc/hosts.allow 1.00 05/28/93

#

Author: Fred N. van Kempen, <waltje@uwalt.nl.mugnet.org

#

#

sshd:192.168.86. <- The line we added

End of hosts.allow.

This basically reads as “ALLOW connections to sshd from systems only on the 192.168.86.0
network”. This limits connections to originating from machines on my local forensic network
only. Read the man page and adjust to your needs.

Understanding hosts.deny and hosts.allow gives us a good start on our security configura-
tion. For a typical forensic workstation, this is pretty much as simple as it needs to be at
the host level. For many forensic practitioners, simply adding ALL:ALL to hosts.deny and
leaving hosts.allow totally empty might be sufficient if you have no need of access.

In order to actually filter traffic at the network interface, we’ll need to set up a host based
firewall.

89

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

7.1.3 Host Based Firewall with iptables

It is common practice for many forensic practitioners using other operating systems to utilize
some sort of host based firewall program to monitor their workstation’s network connections
and provide some form of baseline protection from unsolicited access. You may want to do
the same thing on your Linux workstation, or you may, in some cases, be required to run a
host based firewall by agency or corporate policy. In any event, the most commonly used
Linux equivalent for this sort of thing is the iptables network packet filter.

There are newer (relatively) network packet filters. Over the past few years nftables, man-
aged using nft, has become more popular and is included in the mainstream Linux kernel. It
is included by default in Slackware and most other distributions and more information can
be found on the Internet. For the purpose of this guide, we will stick to iptables for now.

Of all the subjects covered in this document, this is one of the more complex, with little
direct relationship to actual forensic practice. It is, however, too important not to cover if
we are going to discuss Linux as a forensic platform and the required workstation security.
A host based firewall may not be a requirement for a good forensic workstation, especially
given that many agencies and companies are already working in a well protected (or air
gapped) network environment. However, in my humble opinion, it’s still a very good idea.
It’s all too common to see novice Linux users rely completely on the notion that Linux is
“just more secure” than other operating systems. And I know from personal experience that
there are digital forensic practitioners out there that have workstations connected directly
to the Internet and don’t take these precautions.

Unlike most of the other subjects covered in this configuration section, iptables requires a
bit more explanation to effectively set it up from scratch than I’m willing to put in a simple
practitioner’s guide. As a result, rather than giving a detailed description and step by step
instructions, we are going to briefly discuss how to view the iptables configuration and
provide a baseline script to get the reader started. Our “baseline” script has been provided
by Robby Workman (http://www.rlworkman.net).

First, we need to make sure we understand the differences between the protections provided
by hosts.allow and hosts.deny vs. iptables. As we mentioned earlier, the hosts* files block
access at the application level, whereas iptables blocks network traffic at the specified phys-
ical network interface. This is an important distinction. iptables essentially sits between
the network and the applications and accepts or rejects network packets at the kernel level.

In simple terms, iptables deals with chains. The INPUT chain for incoming traffic, the OUTPUT

chain for outgoing traffic, and the FORWARD chain that handles traffic with neither its origin or
destination at the filtered interface. These chains have default policies, to which additional
rules can be appended.

Let’s have a look at our default iptables configuration (in this case “default” means “empty
configuration”). To do this we can use iptables with the -S option to display the rules within

90

http://www.rlworkman.net

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

each chain. If you do not provide the chain name (INPUT, for example), then the command
will list all the chains and their rules, starting with the default policies:

root@forensicbox:~# iptables -S

-P INPUT ACCEPT

-P FORWARD ACCEPT

-P OUTPUT ACCEPT

The above command lists the policies for each chain along with any rules that may have
been added. As you can see from the output here, the default policies are ACCEPT, and there
are no other rules. None of our network traffic is being filtered.

It is often desirable to hide our systems from all network traffic, including ping traffic.
With our empty iptables configuration, from an external host, we can ping our forensic
workstation, (192.168.86.83) and the ICMP packets come though:

root@hyperion:~# ping 192.168.86.83

PING 192.168.86.83.lan (192.168.86.83) 56(84) bytes of data.

64 bytes from 192.168.86.83.lan (192.168.86.83): icmp_seq=1 ttl=64 time=213 ms

64 bytes from 192.168.86.83.lan (192.168.86.83): icmp_seq=2 ttl=64 time=34.5 ms

64 bytes from 192.168.86.83.lan (192.168.86.83): icmp_seq=3 ttl=64 time=54.2 ms

^C

--- 192.168.86.83.lan ping statistics ---

3 packets transmitted, 3 received, 0% packet loss, time 3003ms

rtt min/avg/max/mdev = 34.471/95.667/213.198/69.815 ms

Now we are going to create an iptables script based heavily on the one found at http:
//www.rlworkman.net/conf/firewall/rc.firewall.desktop.generic

Have a look at the following version of the script, edited with vi (I’m told this is a good
exercise in vi editing. . .), which we’ll save as /etc/rc.d/rc.firewall. It’s important that
you get the name right as this is another script that is called from /etc/rc.d/rc.inet2, as
we discussed earlier. Once the script is created and saved, let’s have a look at it.

root@forensicbox:~# less /etc/rc.d/rc.firewall

Define variables

IPT=$(which iptables) # change if needed

EXT_IF=eth0 # external interface (connected to internet)

Enable TCP SYN Cookie Protection

if [-e /proc/sys/net/ipv4/tcp_syncookies]; then

echo 1 > /proc/sys/net/ipv4/tcp_syncookies

fi

91

http://www.rlworkman.net/conf/firewall/rc.firewall.desktop.generic
http://www.rlworkman.net/conf/firewall/rc.firewall.desktop.generic

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

Disable ICMP Redirect Acceptance

echo 0 > /proc/sys/net/ipv4/conf/all/accept_redirects

Do not send Redirect Messages

echo 0 > /proc/sys/net/ipv4/conf/all/send_redirects

Set default policy to DROP

$IPT -P INPUT DROP

$IPT -P OUTPUT DROP

$IPT -P FORWARD DROP

Flush old rules

$IPT -F

Allow loopback traffic

$IPT -A INPUT -i lo -j ACCEPT

$IPT -A OUTPUT -o lo -j ACCEPT

Allow packets of established connections and those related to them

$IPT -A INPUT -i $EXT_IF -m conntrack --ctstate ESTABLISHED,RELATED -j ACCEPT

Allow all outgoing packets except invalid ones

$IPT -A OUTPUT -o $EXT_IF -m conntrack --ctstate INVALID -j DROP

$IPT -A OUTPUT -o $EXT_IF -j ACCEPT

Allow incoming ssh (uncomment the line below if needed)

$IPT -A INPUT -i $EXT_IF -p tcp --dport 22 --syn -m conntrack --ctstate NEW -j

↪→ ACCEPT

The file, shown above, starts with variable definitions, followed by a number of lines that set
various kernel parameters for better security. We then continue with setting all the default
policies for INPUT, OUTPUT and FORWARD to the far more secure DROP, rather than simply
ACCEPT. Then we define rules that are appended (-A) to the various chains. Also note that
I uncommented the last line in the script, referring to TCP traffic (-p tcp) on destination
port 22 (--dport 22). This will allow SSH traffic in.

Important Note: Make sure line 4 defines the correct network interface. In the script above
we have EXT_IF=eth0. For example, if you are using a wireless interface, you might need to
change your interface to wlan0. You can use the ifconfig command to see which interface
has an address.

With the file saved to /etc/rc.d/rc.firewall we start it by making the file executable. The
firewall script, if it exists and has executable permissions, will be called from
/etc/rc.d/rc.inet2. Check the permissions on the file, change them to executable (using
chmod) and check again. We can load the rules by simply calling the script explicitly:

92

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

root@forensicbox:~# ls -l /etc/rc.d/rc.firewall

-rw-r--r-- 1 root root 1080 Jun 18 22:22 /etc/rc.d/rc.firewall

root@forensicbox:~# chmod 755 /etc/rc.d/rc.firewall

root@forensicbox:~# ls -l /etc/rc.d/rc.firewall

-rwxr-xr-x 1 root root 1080 Jun 18 22:22 /etc/rc.d/rc.firewall*

root@forensicbox:~# sh /etc/rc.d/rc.firewall

The last command in the session illustrated above shows that we have executed the firewall
script. Now when we look at our iptables configuration, we see the rules in place:

root@forensicbox:~# iptables -S

-P INPUT DROP

-P FORWARD DROP

-P OUTPUT DROP

-A INPUT -i lo -j ACCEPT

-A INPUT -i eth0 -m conntrack --ctstate RELATED,ESTABLISHED -j ACCEPT

-A INPUT -i eth0 -p tcp -m tcp --dport 22 --tcp-flags FIN,SYN,RST,ACK SYN -m

↪→ conntrack --ctstate NEW -j ACCEPT

-A OUTPUT -o lo -j ACCEPT

-A OUTPUT -o eth0 -m conntrack --ctstate INVALID -j DROP

-A OUTPUT -o eth0 -j ACCEPT

Here we see the default policies (-P) are now set to DROP and we have several rules in each
chain. The lines starting with -A signify that we are appending a rule to our chain. Note
that since our default policy is to drop all incoming traffic, and there is no explicit rule to
allow incoming ICMP traffic, we can no longer ping our forensic workstation from an external
host. We can, however, connect with SSH since we have a rule that accepts TCP traffic on
destination port 22 (assuming you un-commented the last line of the script and assuming
the SSH server is running on the default port).

root@hyperion:~# ping 192.168.86.83

PING 192.168.86.83 (192.168.86.83) 56(84) bytes of data.

^C

--- 192.168.86.83 ping statistics ---

6 packets transmitted, 0 received, 100% packet loss, time 5153ms

Trying to ping the forensic workstation (at IP 192.168.86.83) from a host called hyperion.
If you need to allow other traffic, there are many tutorials and examples on the Internet to
work from. This is a very simple and generic host based network packet filter. And as with
the other subjects in this guide, it is meant to provide a primer for additional learning.

93

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

7.2 Updating the Operating System

Keeping the operating system up to date is an important part of workstation security. Most
Linux distributions come with some sort of mechanism for keeping the OS up to date with
the latest security and stability patches. If you choose to use a distribution other than
Slackware, then be sure to check the appropriate documentation.

• Debian and Ubuntu – synaptic aptitude

• Fedora – yum

• Arch Linux – pacman

• Gentoo – portage

• Slackware – pkgtools

From the perspective of a forensic workstation, Slackware takes a particularly conservative
(and therefore safe) approach to updating the operating system. Once a Slackware release is
considered “stable”, the addition of updated library and binary packages is generally limited
to those required for a properly patched OS. Little or no emphasis is placed on running
the “latest and greatest” for the simple sake of doing so. I would strongly suggest against
continuously updating software without having a good reason (security patches, for example).
New versions of critical libraries and system software should always be tested before use in
a production forensic environment – this does not imply re-validation with every update.
That’s up to your own policies and procedures.

Note that with some distributions, updating the OS on a regular basis, without proper and
often complex configuration, can result in a dozen or so new and updated packages every
couple of weeks. In the context of a stable, well tested forensic platform, this is less than
ideal. Also, Slackware developers tend not to patch upstream code, as is common among
some other distributions. Slackware takes the approach of “if it ain’t broke, don’t fix it.”

This information is not meant to disparage other distributions. Far from it. Any properly
administered Linux distribution makes a fine forensic platform. These are, however, impor-
tant considerations if you are running a forensic workstation in any sort of litigious setting.
Too often, Linux Forensics beginners trust their platform to numerous untested, desktop ori-
ented updates, without thinking about potential changes in behavior that can, in admittedly
limited circumstances, raise questions.

7.2.1 Slackware’s pkgtools

Slackware provides a set of utilities for manipulating packages in pkgtools. These are pkgtool

(menu driven), installpkg, removepkg and upgradepkg. These are discussed in detail here:
https://www.slackbook.org/html/package-management-package-utilities.html.

94

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

7.2.2 slackpkg for automated updates

We are going to focus on an automated tool for package management in Slackware - slackpkg
↪→ . It’s extremely easy to configure and use. The man page provides very clear instructions
on using slackpkg along with a good description of some of it’s capabilities.

We start by picking a single “mirror” (Slackware repository) listed in the slackpkg configura-
tion file. Log in as root and open /etc/slackpkg/mirrors with vi (or your editor of choice).
Un-comment a single line and you’re ready to go (delete the # sign from the front of an
address). The line you un-comment needs to be for the specific architecture (32 bit vs 64
bit, etc.) and version of Slackware you are running10, and should be near your geographic
region (US, UK, Poland, etc.).

Take note that “Slackware-current” is a development branch of Slackware and is NOT suitable
for our purposes. Do not select a mirror from the Slackware-current list.

The below example shows an edited /etc/slackpkg/mirrors file where a single mirror has
been un-commented (bold for emphasis - note the # has been removed). The mirror we are
selecting is for Slackware64-15.0. Select a mirror appropriate for your location.

root@forensicbox:~# vi /etc/slackpkg/mirrors

...

#--

Slackware64-15.0

#--

USE MIRRORS.SLACKWARE.COM (DO NOT USE FTP - ONLY HTTP FINDS A NEARBY MIRROR)

http://mirrors.slackware.com/slackware/slackware64-15.0/

#

AUSTRALIA (AU)

ftp://ftp.cc.swin.edu.au/slackware/slackware64-15.0/

http://ftp.cc.swin.edu.au/slackware/slackware64-15.0/

ftp://ftp.iinet.net.au/pub/slackware/slackware64-15.0/

http://ftp.iinet.net.au/pub/slackware/slackware64-15.0/

ftp://mirror.aarnet.edu.au/pub/slackware/slackware64-15.0/

...

One precaution you may want to take with slackpkg is to add several packages to the
blacklist. The blacklist specifies those programs and packages that we do not want up-
graded on a regular basis. We do this to avoid having to complicate periodic security updates
with changes to our bootloader and other components that add excessive complexity to our
upgrade process. In particular, we want to avoid (for now) having to go through all the steps
required to upgrade our kernel packages.

10Pay attention to the architecture and version. I made a complete muppet of myself on the ##slackware
IRC channel one day, asking for help when I was trying to upgrade Slackware64 (64 bit OS), not knowing I
had selected a 32 bit mirror and therefore destroyed my system when I updated.

95

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

The blacklist file is located at /etc/slackpkg/blacklist and there are several lines regarding
kernel upgrades that are included but commented out. Un-comment those lines by removing
the leading \# symbol, and add the additional lines as shown so the file looks like this (in
part):

root@forensicbox:~# vi /etc/slackpkg/blacklist

...

Automated upgrade of kernel packages aren’t a good idea (and you need to

run "lilo" after upgrade). If you think the same, uncomment the lines

below

#

kernel-firmware

kernel-generic

kernel-generic-smp

kernel-headers

kernel-huge

kernel-huge-smp

kernel-modules

kernel-modules-smp

kernel-source

...

When a critical update to one of the kernel packages is required, the lines in the blacklist can
always be temporarily commented out and the packages updated as usual. If you leave the
lines commented out, you will get periodic kernel updates. Just remember that an updated
kernel will require you to update your boot loader as well. You will be prompted for this
anyway.

We’ve selected our mirror and adjusted our blacklisted packages, now it is simply a matter of
updating our package list...we do this with the simple command slackpkg update, which will
download the current file list (including patches). Once that is complete, you run slackpkg

↪→ upgrade-all and you will be presented with a selection of packages to upgrade (minus
the blacklisted packages).

The man page for slackpkg provides easy to follow instructions. In a nutshell, for our
purposes here, usage is simply:

1. un-comment a mirror in /etc/slackpkg/mirrors

2. optionally add files (or un-comment entries) in /etc/slackpkg/blacklist

3. run slackpkg update

4. run slackpkg upgrade-all

96

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

I would strongly suggest you take a minute to read the change log for the version of
Slackware (or whatever distribution) you are using. Understanding what you are updat-
ing and why is an important part of understanding your forensic platform. It may seem
tedious at first, but it should be part of your common system maintenance tasks. You can
read the file ChangeLog.txt at the mirror you selected for updating your system, or simply
go to: https://mirror.SlackBuilds.org/slackware/slackware64-15.0/ChangeLog.txt
when updates are available.

Using the slackpkg method above is the easiest way to keep your OS up to date with the
latest stable security fixes and patches. Periodically, you can run slackpkg update and
slackpkg upgrade-all to keep your system up to date. The first two steps only need to be
done once on your system.

Once again, if you are not using Slackware, be sure to check your distribution’s documenta-
tion to determine how best to keep your workstation properly patched. But please continue
to bear in mind that “latest and greatest” does not translate to “properly patched”. An
important distinction.

7.3 Installing and Updating "External" Software

So we’ve discussed using slackpkg for updating the OS packages and keeping the system
properly patched and updated. What about “external” software, that is, software that is not
included in a default installation, like our forensic utilities? There are a number of ways we
can install this “external” software on our system.

1. Compile from source

2. Use a pre-built package (usually distro dependent)

3. Build your own package

7.3.1 Compiling From Source

Compiling from source is the most basic method for installing software on Linux. It is
generally distribution agnostic and will work for any given package on most distributions,
assuming dependencies are met. Correctly used, compiling from source has the benefit of
being tailored more to your environment, with better optimization. The biggest drawback is
that compiling from source, without careful manipulation of configuration files, can “litter”
your system with executables and libraries placed in less than optimal locations. It can
also result in difficult to manage upgrade paths for installed software, or even just trying to
remember what you have previously installed.

97

https://mirror.SlackBuilds.org/slackware/slackware64-15.0/ChangeLog.txt

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

The source files (containing source code) normally come in a package commonly referred to
as a “tarball”, or a tar.gz file (a gzipcompressed tar archive). The archive is extracted, the
source is compiled, and then an install script is executed to place the resulting program files
and documentation in the appropriate directories. The following shows a very abbreviated
view of a quick source compilation. The normal course of commands used is (usually):

tar xzvf packagename.tar.gz

cd packagename

./configure

make

make install

First we extract the package and change into the resulting directory. The ./configure

↪→ command 11 sets environment variables and enables or disables program features based
on available libraries and arguments. The make command compiles the program, using the
parameters provided by the results of the previous ./configure command. Finally, the make

↪→ install command moves the compiled executables, libraries and documentation to their
respective directories on the computer. Note that make install is generally not distribution
aware, so the resulting placement of program files might not fit the conventions for a given
Linux distro, unless the proper variables are passed during configuration.

Here’s a quick illustration:

Once we have a package downloaded, we extract the tarball. After the package has been
extracted, we change into the resulting directory and then run a “configure script” to allow
the program to ascertain our system configuration and prepare compiler options for our
environment. We do this with ./configure

root@forensicbox:~# tar xzvf package.tar.gz

...

root@forensicbox:~# cd package

root@forensicbox:~# ./configure

...

checking build system type... i686-pc-linux-gnu

checking host system type... i686-pc-linux-gnu

configure: autobuild project... package

...

Assuming no errors, we type make and watch the compiler go to work. Finally, we run the
command that properly installs both the tools to the proper path, and any required libraries
to the proper directories. This is generally accomplished with make install

11The ./ indicates that the configure command is run from the current directory

98

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

root@forensicbox:~# make

Making all in lib

make[1]: Entering directory ‘/root/package/lib’

...

root@forensicbox:~# make install

Making install in lib

make[1]: Entering directory ‘/root/package’

make install-am

make[2]: Entering directory

...

Our program is now installed and ready to use. Knowing how to use source packages for
software installation is important part of understanding how Linux works...just keep in mind
that it’s generally a better idea to use distribution packages (or create your own). Note that
the example shown above is for source packages built with autoconf/automake. You may
also run across software that is Python or Perl based, etc. These will differ in how they
are built and installed. Most source packages will include a README or INSTALL.txt file when
extracted. Read them.

7.3.2 Using Distribution Packages

As we’ve already mentioned, just about every Linux distribution has some sort of “package
manager” for installing and updating packages. For updating and adding official Slackware
software (included in the distribution), we’ve introduced using slackpkg. slackpgk is actually
a front end to the pkgtool group of utilities which handle the work of adding and removing
software packages from your system. For an excellent overview of pkgtool and its various
commands, have a look at http://www.slackware.com/config/packages.php.

Slackware packages are really just compressed archives that, when installed, place the package
files in the proper place. To install a Slackware package, when we are not using the slackpkg

front end, we use the pkgtool command installpkg.

Our example here will be a pretend Slackware package called software. Slackware packages
are generally named with the extension tgz or txz (since they are really just compressed
archives). Once you’ve downloaded or prepared your package (our example is called software

↪→ .tgz), you install it with the following command:

root@forensicbox:~# installpkg software.tgz

Verifying package software.tgz.

Installing package software.tgz:

PACKAGE DESCRIPTION:

software

99

http://www.slackware.com/config/packages.php

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

#

This is where you will find a description

of the software package you are installing

#

#

#

Homepage: http://www.software.homepage.com

#

Executing install script for software.tgz.

Package software.tgz installed.

Packages can be similarly removed or upgraded with removepkg or upgradepkg, respectively.

You can find pre-made packages for all sorts of software for many distributions all over the
Internet. The problem with many of them is that they do not come from trusted sources
and you often have no idea what configuration options were used to build them.

As a general rule of thumb, I always like to build my own packages for software that is not
part of the Slackware full installation. This allows me to build the software with the options
I need (or without ones I don’t), optimized for my particular system, and it further allows me
to control how the software is eventually installed. Luckily Slackware provides a relatively
easy way to create packages from source code. SlackBuilds.

7.3.3 Building Packages with SlackBuilds

In short, a SlackBuild is a script that (normally) takes source code and compiles and packages
it into a Slackware .tgz (or .tzx) file that we can install using installpkg.

The SlackBuild script handles the configure options and optimizations that the script author
decides on (but are visible and editable by you), and then installs the software and related
files into a package that follows Slackware software conventions for executable and libraries,
where applicable, and assuming the build author follows the template. The scripts are easily
editable if you want to change some of the options or the target version, and provide for an
easy, human readable way to control the build process. SlackBuilds for a large selection of
software are available at http://www.SlackBuilds.org.

The SlackBuild itself comes as a .tar.gz file that you extract with the tar command. The
resulting directory contains the build script itself. The script is named software.SlackBuild

↪→ , with software being the name of the program we are creating a package for. There are
normally four files included in the SlackBuild package:

• software.info gives information about where to obtain the source code, the version of
the software the script is written for, the hash of the source code, required dependencies,
and more.

100

http://www.SlackBuilds.org

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

• README contains useful information about the package, potential pitfalls, and optional
dependencies.

• software.SlackBuild is the actual build script.

• slack-desc is a brief description of the file displayed during install.

To build a Slackware compatible package, you simply drop the source code for the software
into the same directory the SlackBuild is in (no need to extract the source tarball) and
execute the SlackBuild script. The package is created and (normally) placed in the /tmp

directory ready for installation via installpkg.

Of course, there are automated tools to handle building Slackware packages for you. You
can check out sbopkg, sbotools, slpkg and a few others.

A WORD OF CAUTION: Be careful about relying solely on automated tools for package
management. Regardless of the platform you choose to run on, I would urge you to learn
how to build packages yourself, or at the very least learn how to determine how to change
package options or determine what build options were used before running software. This
is not to say automated tools are bad...but one of the strengths of Linux that we often talk
about is the control it gives us over our system. Controlling your system software is one
aspect of that. You can use automated tools and still maintain control...you just need to be
careful. We will use that approach here.

We will talk specifically about one of the package tools you can use with Slackware to
automate some of the more mundane steps we take when installing software. To illustrate
the build process, we will install sbotools via a manual SlackBuild process, and then use
sbotools to assist us in building and installing the remainder of the software we’ll use in this
guide.

First, we’ll grab the SlackBuild from https://www.SlackBuilds.org. You can go to the
website search and browse the packages there, but since we know the package we want, well
use the wget tool to download it directly. In the next set of commands we’ll accomplish the
following:

• download the SlackBuild tarball for sbotools with wget

• extract the contents of the tarball with the tar command

• change (cd) to the resulting sbotools directory and list the files (ls)

root@forensicbox:~# wget
https://www.slackbuilds.org/slackbuilds/15.0/system/sbotools.tar.gz

--2022-09-09 12:15:50-- https://www.slackbuilds.org/slackbuilds/15.0/system/

↪→ sbotools.tar.gz

101

https://www.SlackBuilds.org

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

Resolving www.slackbuilds.org 66.85.79.67, 2604:5800:0:90::67

Connecting to www.slackbuilds.org |66.85.79.67|:443... connected.

HTTP request sent, awaiting response... 200 OK

Length: 2236 (2.2K) [application/x-gzip]

Saving to: sbotools.tar.gz

sbotools.tar.gz 100%[==========================>] 2.18K --.-KB/s in 0s

2022-09-09 12:15:50 (1.18 GB/s) - sbotools.tar.gz saved [2236/2236]

root@forensicbox:~# ls

sbotools.tar.gz

root@forensicbox:~# tar xzvf sbotools.tar.gz

sbotools/

sbotools/sbotools.info

sbotools/slack-desc

sbotools/README

sbotools/sbotools.SlackBuild

root@forensicbox:~# cd sbotools

...

root@forensicbox:~ /sbotools# ls

README sbotools.SlackBuild* sbotools.info slack-desc

So what we’ve done up to this point is just download and extract the SlackBuild package.
Now we need to get the sbotools source package in the same directory.

The sbotools.info file will help with this. We’ll view that file and then use the information
contained therein to download the source code and check the MD5 hash. The MD5 hash
is a value that lets us know the file we download is what we expect. Using wget and the
URL provided in the DOWNLOAD field, the source code for sbotools will end up in the same
directory.

root@forensicbox:~ /sbotools# cat sbotools.info

PRGNAM="sbotools"

VERSION="2.7"

HOMEPAGE="https://pink-mist.github.io/sbotools/"

DOWNLOAD="https://pink-mist.github.io/sbotools/downloads/

sbotools-2.7.tar.gz"

MD5SUM="ddf4b174fa29839564d7e784ff142581"

DOWNLOAD_x86_64=""

MD5SUM_x86_64=""

REQUIRES=""

MAINTAINER="Andreas Guldstrand"

EMAIL="andreas.guldstrand@gmail.com"

102

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

root@forensicbox:~ /sbotools# wget https://pink-mist.github.io/sbotools/downloads/
sbotools-2.7.tar.gz

--2022-09-09 12:21:47-- https://pink-mist.github.io/sbotools/downloads/sbotools

↪→ -2.7.tar.gz

Resolving pink-mist.github.io 185.199.108.153, 185.199.110.153, ...

Connecting to pink-mist.github.io |185.199.108.153|:443... connected.

HTTP request sent, awaiting response... 200 OK

Length: 45833 (45K) [application/gzip]

Saving to: sbotools-2.7.tar.gz

sbotools-2.7.tar.gz 100%[===========================>] 44.76K --.-KB/s in 0.02s

2022-09-09 12:21:47 (1.86 MB/s) - sbotools-2.7.tar.gz saved [45833/45833]

root@forensicbox:~ /sbotools# ls

README sbotools-2.7.tar.gz sbotools.SlackBuild* sbotools.info slack-desc

root@forensicbox:~ /sbotools# md5sum sbotools-2.7.tar.gz

ddf4b174fa29839564d7e784ff142581 sbotools-2.7.tar.gz

The output from our md5sum command on the downloaded source matches the MD5SUM field
in the sbotools.info file, so we know our download is good.

This is where, if we have not already done so, we need to read the README file (using cat

↪→ or less)...understand the caveats and possible optional dependencies...and then compile
our source code and make our Slackware .tgz package. The latter two steps are simply
accomplished by calling the SlackBuild file itself with ./sbotools.Slackbuild:

root@forensicbox:~ /sbotools# ./sbotools.SlackBuild

sbotools-2.7/

sbotools-2.7/sboclean

sbotools-2.7/man5/

sbotools-2.7/man5/sbotools.conf.5

...

Checking if your kit is complete...

Looks good

Generating a Unix-style Makefile

...

Creating Slackware package: /tmp/sbotools-2.7-noarch-1_SBo.tgz

./

usr/

usr/share/

...

Slackware package /tmp/sbotools-2.7-noarch-1_SBo.tgz created.

103

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

And looking at the last line of the output, we see that we have a usable .tgz Slackware
package created for us in /tmp. All we need to do now is install the package with installpkg

from pkgtools:

root@forensicbox:~ /sbotools# installpkg /tmp/sbotools-2.7-noarch-1_SBo.tgz

Verifying package sbotools-2.7-noarch-1_SBo.tgz.

Installing package sbotools-2.7-noarch-1_SBo.tgz:

PACKAGE DESCRIPTION:

sbotools (ports-like interface to slackbuilds.org)

#

sbotools is a set of perl scripts providing a ports-like automation

interface to slackbuilds.org. Its features include requirement

handling and the ability to handle 32-bit and compat32 builds on

multilib x86_64 systems.

#

https://pink-mist.github.io/sbotools/

#

Package sbotools-2.7-noarch-1_SBo.tgz installed.

7.3.4 Using the automated package tool sbotools

So, now we’ve installed sbotools, and we are going to use it in lieu of all the downloading,
MD5 checks, extracting and building. It is extremely important that we remain mindful of
the README files and ensure that we don’t allow the automation to make us complacent. Read
the documentation for each package you are installing and be familiar with what it is doing
to your system along with what options you may want to enable or disable.

sbotools is actually a collection of utilities. The very first time we call sbotools, we need to
initialize the SlackBuild repository. By default, sbotools (via sbosnap) will pull the entire
SlackBuilds tree (from SlackBuilds.org and place it in /usr/sbo/repo.

root@forensicbox:~# sbosnap fetch

Pulling SlackBuilds tree...

Cloning into ’/usr/sbo/repo’...

remote: Enumerating objects: 633863, done.

remote: Counting objects: 100% (1554/1554), done.

remote: Compressing objects: 100% (767/767), done.

remote: Total 633863 (delta 814), reused 1517 (delta 786), pack-reused 632309

Receiving objects: 100% (633863/633863), 178.70 MiB | 5.60 MiB/s, done.

Resolving deltas: 100% (451310/451310), done.

104

SlackBuilds.org

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

root@forensicbox:~# ls -l /usr/sbo/repo

total 1564

-rw-r--r-- 1 root root 724797 Sep 9 12:43 ChangeLog.txt

-rw-r--r-- 1 root root 1006 Sep 9 12:43 README

-rw-r--r-- 1 root root 562817 Sep 9 12:43 SLACKBUILDS.TXT

drwxr-xr-x 312 root root 12288 Sep 9 12:43 academic/

drwxr-xr-x 26 root root 4096 Sep 9 12:43 accessibility/

drwxr-xr-x 324 root root 12288 Sep 9 12:43 audio/

drwxr-xr-x 12 root root 4096 Sep 9 12:43 business/

drwxr-xr-x 477 root root 20480 Sep 9 12:43 desktop/

drwxr-xr-x 638 root root 20480 Sep 9 12:43 development/

drwxr-xr-x 556 root root 20480 Sep 9 12:43 games/

drwxr-xr-x 75 root root 4096 Sep 9 12:43 gis/

drwxr-xr-x 255 root root 12288 Sep 9 12:43 graphics/

drwxr-xr-x 66 root root 4096 Sep 9 12:43 ham/

drwxr-xr-x 325 root root 20480 Sep 9 12:43 haskell/

drwxr-xr-x 1032 root root 36864 Sep 9 12:43 libraries/

drwxr-xr-x 184 root root 4096 Sep 9 12:43 misc/

drwxr-xr-x 215 root root 4096 Sep 9 12:43 multimedia/

drwxr-xr-x 734 root root 20480 Sep 9 12:43 network/

drwxr-xr-x 221 root root 4096 Sep 9 12:43 office/

drwxr-xr-x 573 root root 24576 Sep 9 12:43 perl/

drwxr-xr-x 861 root root 36864 Sep 9 12:43 python/

drwxr-xr-x 100 root root 4096 Sep 9 12:43 ruby/

drwxr-xr-x 1088 root root 36864 Sep 9 12:43 system/

Once this is done, you can search, install and upgrade packages and their initial dependencies
all from single commands using the following:

sbofind : search for packages based on names and keywords
sbocheck : update the repository and identify packages that need upgrading
sboinstall : install a package (and it’s dependencies)
sboupgrade : upgrade an already installed package

We’ll be using sbotools to install software throughout the remainder of this document (if
you are using Slackware). But lets start with a quick example of a simple installation for
some anti-virus/malware detection software that we’ll cover later.

I have a clean Slackware install with a single external software package, sbotools, installed.
Now I want to install more software.

To illustrate a more automated install - but one that still requires user intervention - we’ll
install ClamAV (clamav), a virus/malware scanner. First we will use sbofind to search for
clamav. We then narrow our search and take a quick look at the README file. Then we simply
run sboinstall to download, check, build and install the package for us. The shortcut to

105

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

all this is to simply type sboinstall clamav and we’re done. But I prefer a more cautious
approach.

First, let’s search for available packages that match clamav:

root@forensicbox:~# sbofind clamav

SBo: clamav-unofficial-sigs 5.6.2

Path: /usr/sbo/repo/network/clamav-unofficial-sigs

SBo: squidclamav 6.16

Path: /usr/sbo/repo/system/squidclamav

SBo: clamav 0.105.0

Path: /usr/sbo/repo/system/clamav

The clamav package is the third one down. Now I’m going to run sbofind again, but this
time limit the output to an exact match for clamav (-e) with no tags (-t) and view the
README file for the package (-r).

root@forensicbox:~# sbofind -t -e -r clamav

SBo: clamav 0.105.0

Path: /usr/sbo/repo/system/clamav

README:

Clam AntiVirus is a GPL anti-virus toolkit for UNIX. The main purpose

of this software is the integration with mail servers (attachment

scanning). The package provides a flexible and scalable multi-threaded

daemon, a command line scanner, and a tool for automatic updating via

Internet.

This build script should build a package that "just works" after install.

You will need to specify a two-letter country code (such as "us") as an

argument to the COUNTRY variable when running the build script (this will

default to "us" if nothing is specified). For example:

COUNTRY=nl ./clamav.SlackBuild

Groupname and Username

You must have the ’clamav’ group and user to run this script,

for example:

groupadd -g 210 clamav

useradd -u 210 -d /dev/null -s /bin/false -g clamav clamav

Configuration

106

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

See README.SLACKWARE for configuration help.

And what we have here is a perfect example of why we read the README files prior to installing
software. In order to make it run correctly, we need to make sure we have a group and user
called clamav. The commands we need to accomplish this are provided right in the README.
So we run those and then we are ready to install the software. You can even allow sbotools

to run the commands for you, but I would suggest you run them yourself and decline the
prompt in the sboinstall command. clamav also has a secondary README.Slackware file with
additional instructions for running the program as a mail scanner. You can elect to read
that as well, if you like, though we won’t be setting that up in this example.

root@forensicbox:~# groupadd -g 210 clamav

root@forensicbox:~# useradd -u 210 -d /dev/null -s /bin/false -g clamav clamav

root@forensicbox:~# sboinstall clamav

Now sbotools will download, check, unpack, configure, build and finally install the package
for us. We’ll continue to use this method to install software through the rest of this guide.
We will cover ClamAV usage later in this document.

Remember we can periodically use sbocheck to see if we have any external software that
needs updating (recall that slackpkg update is used for official Slackware packages).

We’ll also install another package we talked about previously. Back when we did our ini-
tial system inventory, we described the lshw command. We can install that easily from
SlackBuilds.org using sboinstall.

First, let’s make sure we can find lshw, and then read the README file:

root@forensicbox:~# sbofind lshw

output

SBo: lshw B.02.19.2

Path: /usr/sbo/repo/system/lshw

root@forensicbox:~# sbofind lshw -r

SBo: lshw B.02.19.2

Path: /usr/sbo/repo/system/lshw

README:

lshw (Hardware Lister) is a small tool to provide detailed information

on the hardware configuration of the machine. It can report exact memory

configuration, firmware version, mainboard configuration, CPU version

and speed, cache configuration, bus speed, etc. on DMI-capable x86 or

EFI (IA-64) systems and on some PowerPC machines (PowerMac G4 is known

to work).

107

SlackBuilds.org

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

Information can be output in plain text, XML, or HTML.

It currently supports DMI (x86 and EFI only), OpenFirmware device tree

(PowerPC only), PCI/AGP, ISA PnP (x86), CPUID (x86), IDE/ATA/ATAPI,

PCMCIA (only tested on x86), USB, and SCSI.

On x86, lshw needs to be run as root to be able to access DMI

information from the BIOS. Running lshw as a non-root user usually gives

much less detailed information.

There several build options available for the SlackBuild:

GUI=no Disable GTK GUI support (default: yes)

ZLIB=yes Enable zlib support (default: no)

SQLITE=yes Enable sqlite support (default: no)

where one or more build options are passed to the SlackBuild. For

example, to disable GUI and enable zlib support use:

GUI=no ZLIB=yes ./lshw.SlackBuild

When we actually run the sboinstall command, the README is displayed by default anyway,
but we show it above for explicitness. I prefer to read the README before the install command
so I know what to expect and what caveats to prepare for. And now we simply install the
build:

root@forensicbox:~# sboinstall lshw

Proceed with lshw? [y]

Install queue: lshw

Are you sure you wish to continue? [y]

Executing install script for lshw-B.02.19.2-x86_64-1_SBo.tgz.

Package lshw-B.02.19.2-x86_64-1_SBo.tgz installed.

Cleaning for lshw-B.02.19.2...

One final note on package management. A complete list of packages installed on your system
is maintained in /var/lib/pkgtools/packages. You can browse that directory to see what you
have installed, as well as view the files themselves to see what was installed with the package.
One nice thing about using SlackBuilds is that an SBo tag is added to the package name. We
can grep for this tag in /var/lib/pkgtools/packages and see exactly which external packages
we have installed via SlackBuilds. This is one of the great advantages of using a package

108

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

manager vs. simply compiling and installing software from source directly...the ability to
track what versions of which packages are installed.

We have just installed three packages using build scripts from SlackBuilds.org. One via
manual download (sbotools), and two via sbotools (clamav and lshw). We can use grep to
see this within the /var/lib/pkgtools/packages directory (assuming this is a clean Slackware
system and you’ve installed no other .tgz or .txz Slackware packages):

root@forensicbox:~# ls /var/lib/pkgtools/packages | grep SBo

clamav-0.105.0-x86_64-1_SBo

lshw-B.02.19.2-x86_64-1_SBo

sbotools-2.7-noarch-1_SBo

When it comes time to upgrade (or check for updates to) software we’ve installed via Slack-
Builds and sbotools, you can use sbocheck. Running this command will fetch a fresh Slack-
Builds tree from SlackBuilds.org and compare your installed packages to those currently
available.

root@forensicbox:~# sbocheck

Updating SlackBuilds tree...

HEAD is now at f25743f30c 20220827.1 global branch merge.

Checking for updated SlackBuilds...

No updates available.

In this case, we run sbocheck and there are no updates. If an update were listed in the output,
we would simply run sboupgrade <packagename> and the upgrade would be downloaded,
compiled, and properly upgraded. This provides us an easy way to install and upgrade
external packages, in a Slackware friendly format, with minimal fuss.

The earlier caution still stands. Make sure you understand what you are installing and
always always read the README file.

109

SlackBuilds.org
SlackBuilds.org

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

8 Linux and Evidence Handling

Here we begin our study of the actual tools and some of the associated processes we’ll use
for forensics. The process is simplified here, focusing on the basics:

• Organizing output

• Acquiring disk based evidence

• Obtaining a hash

• Mounting acquired evidence volumes

• Scanning for malware (limited to certain evidence types)

• Basic data review using the command line

This is meant to introduce tools, concepts, and analytical approaches to forensics while using
Linux. We’ve mentioned it previously, but there have been significant changes to hardware
in the past couple of years that will require some additional research by the reader.

As with the majority of this guide, we’ll be concentrating on using command line tools for
the above steps. These are the basics, and should not be considered as a template for real
life examinations. This is a ’walk before you run’ approach.

8.1 Evidence Acquisition

In this section we’ll run through a few of the acquisition tools that are available to us. We’ll
cover some of the collection issues, device information, image verification and more advanced
mounting options. Obviously, the first thing we need to do is make sure we have a proper
place to output the results of our imaging and analysis.

As we go through the following sections, try and use an old (smaller) hard drive to follow
along. Find an old SATA drive (the one I’m using is 40GB) and attach it to your computer,
either to the SATA bus directly, or through a USB (preferably 3.x) bridge. That way you
can follow along with the commands and compare the output with what we have here (which
will differ depending on your hardware). You can even use a USB thumb drive, but then
the output for some of the media information collection sections will not provide comparable
output. The best way to learn this material is to actually do it and experiment with options.

110

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

8.2 Analysis Organization

Before we start collecting evidence images and information that might become useful in a
court or an administrative hearing, we might want to make sure we store all this data in an
organized fashion. Obviously this is not something specific to Linux, but we need to make
sure we have several file system locations ready to store and retrieve data:

1. Case specific directories or volumes used to store forensic images for a given case.

2. Case specific directories for storing forensic software output and subject media infor-
mation.

3. Specific directories to be used as mount points for evidence images.

4. A log file of our actions. Documentation and note taking are an imperative part of
proper forensics.

Wherever you might store your case data, you’ll want to keep it organized. In most cases,
when conducting an analysis, you’ll want to make sure you are using “working copies” rather
than the actual image files. This should be common practice. Practitioners will often collect
images or other data directly as evidence. Copies will then me made of that evidence, with
the originals being placed in some sort of controlled storage. Additional copies (perhaps
multiple additional copies) are then made as “working copies”. We will discuss the simple
creation of directories to store these files as we move through the upcoming pages. The
following is just an example of how you might organize the various directories in which you
are storing data. Obviously nothing will be written to the subject disk (the disk we are
analyzing). Then in the section following that we will describe how to identify the correct
disks so you don’t confuse the subject disk with the disk or volume you will use to write
your images to.

NOTE: All of these preparation steps should be taken before you connect a subject disk
to your workstation to minimize the chances of writing to the wrong drive. Proper lab
setup (dedicated imaging workstations or images storage, etc.) is outside the scope of this
document. For simplicity and illustration, we’ll assume you have a single workstation and
will be collecting an image from one drive (subject) and writhing the image files on a mounted
volume or local directory.

You may also want to prepare your evidence drive by wiping and verifying. We’ll also cover
that later once we’ve had a better introduction to imaging tools.

On the evidence drive (where evidence images are to be stored) you might want to create a
top level directory with a case number or other unique identifier for images. Depending on
the tool you use to acquire, an acquisition log might be placed in this directory (or specified
location). The only other files that might normally be kept with the original evidence images
would be the acquisition log (more on that later) and perhaps the media information files

111

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

(more on that later as well). Pay attention to the prompts in the following examples to
ensure you have root permissions when needed (like when writing to the /mnt directory).
Some distributions will have you use sudo rather than logging in as root. In those cases, just
precede each command with sudo.

First, in order to make sure you have enough room on your target storage, you can run the
df -h command. This “disk free” command will show you the free space on each of your
mount points. For example, If you have a 1TB evidence partition on an external disk, you
confirm that it is detected and properly identified. Then mount it to your evidence directory
and then check the free space:

root@forensicbox:~# lsscsi

...

[0:0:0:0] disk ATA INTEL SSDSC2CT12 300i /dev/sda

[2:0:0:0] disk ATA Hitachi HDS72302 A5C0 /dev/sdb

[3:0:0:0] cd/dvd HL-DT-ST DVDRAM GH24NS90 IN01 /dev/sr0

[8:0:0:0] disk Seagate BUP Slim BK 0304 /dev/sdc

...

root@forensicbox:~# mkdir /mnt/evidence

root@forensicbox:~# lsblk | grep sdc

sdc 8:32 0 1.8T 0 disk

sdc1 8:33 0 1T 0 part

sdc2 8:34 0 839G 0 part

root@forensicbox:~# mount /dev/sdc1 /mnt/evidence

root@forensicbox:~# df -h /mnt/evidence

Filesystem Size Used Avail Use% Mounted on

/dev/sdc1 1008G 375G 582G 40% /mnt/evidence

From this output, I can see that the file system mounted on /mnt/evidence has 582GB of free
space. The df command is used with -h to give “human readable” output, and the mount
point is passed as an argument to limit the output. If given without arguments, df -h will
show the free space on all mounted file systems.

For illustration in the following examples we will be writing our output to a case directory in
/mnt/evidence. In the command below, we are creating the case1 directory in /mnt/evidence

root@forensicbox:~# mkdir /mnt/evidence/case1

root@forensicbox:~# ls /mnt/evidence

case1/

112

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

Once you’ve prepared the evidence drive and destination directory, you can connect the
subject disk. Keep in mind our previous discussion regarding write blocking. It’s always a
good idea to use a write blocker or ensure that you are absolutely certain you are not writing
to your evidence. There is some misconception in the community now on what constitutes
an effective "write blocker". In the case of modern storage media, physical write blocking
might not be possible in the sense of the normally acceptable context. Modern solid state
media does not physically operate the same as the spinning disks many examiners are used
to. More on this in the following section.

A default install of Slackware (using the XFCE desktop, at least) will not attempt to auto
mount attached devices. But you should thoroughly test your system before relying on this
(or any other operating system).

8.3 Write Blocking

Let’s discuss this in some more detail. When we talk about "write blocking", in most cases we
are referring to "preventing unwanted writes to media". What we cannot control (directly)
are writes to media by onboard controllers. In this guide we are referring to write blocking
as "preventing users from making changes to attached media via user actions". Discussions
of "wear leveling" and "trim operations" are outside the scope of our discussion.

In the past, much was made about the ability to mount volumes as “read only” in Linux. This
should never be trusted other than to provide the very minimum of accidental changes to a
working copy, or when no other options exist (and always document those instances). This
guide is about using tools, so while covering acquisition policies is not our purpose, it bears
mentioning that write protection is something that should always be kept in mind. Modern
computing environments are extremely complex, and unless you’ve tested every function in
every possible setting, there’s no way to be completely certain that some underlying kernel
mechanism is not making unknown or unexpected writes to poorly protected evidence drives
through some previously untested interface or other mechanism.

Write blocking can be as simple as the physical switch on removable media, or as exotic
(and expensive) as purpose built forensic write blockers. There are also methods available
for “software” write blocking (various kernel patches and other scripts) that will let you set
devices as read only, as with blockdev, but again, your mileage may vary on those techniques.
Many kernel level hardware settings take place after the kernel has already had access to
target media. Specific changes to operating system functions and system calls to try and
prevent such access are outside the scope of this document.

113

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

8.4 Examining Physical Media Information

Back to our acquisition: with the subject disk connected, it’s time for use to collect infor-
mation about the drive, its capabilities, and specific identification - information we’ll need
to effectively acquire evidence from source media. One of the first things we’ll need to do
is re-inventory our system’s connected devices to ensure that we identify the correct subject
disk. Normally you would have taken notes on the physical markings of the hard drive (or
other media) as you removed it from the subject computer, etc. Some suggest an enlarged
photocopy of the disk label as part of the acquisition notes, providing a reliable record of
disk identification.

Figure 10: Hardware details on a drive label

For this exercise I will be using a USB to SATA bridge. Because there is some translation
going on here, I want to make sure I can identify the bridge as well as the disk attached to
it. So once the bridge is attached and powered on, I can run lsusb to see its information
(bold for emphasis). If you are using a directly attached SATA drive, you will not need to
run this command (this is just to see the USB bridge):

root@forensicbox:~# lsusb

...

Bus 006 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub

Bus 004 Device 005: ID 0bc2:ab24 Seagate RSS LLC Backup Plus Portable Drive

Bus 003 Device 003: ID 174c:5106 ASMedia Technology Inc.ASM1051 SATA 3Gb/s bridge

Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub

114

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

...

If you run the lsusb command before and after you attach the USB bridge, you will be able
to easily identify the device for your notes. So knowing we are dealing with a Western Digital
80GB hard disk (WD800HLFS from the label) in a USB/SATA bridge (ASMedia Technology),
we can identify its device node better with lsscsi:

root@forensicbox:~# lsscsi

[0:0:0:0] disk ATA INTEL SSDSC2CT12 300i /dev/sda

[2:0:0:0] disk ATA Hitachi HDS72302 A5C0 /dev/sdb

[3:0:0:0] cd/dvd HL-DT-ST DVDRAM GH24NS90 IN01 /dev/sr0

[8:0:0:0] disk Seagate BUP Slim BK 0304 /dev/sdc

[9:0:0:0] disk ASMT 2105 0 /dev/sdd

Now we can query the disk attached to the host using hdparm. In this case, the USB bridge
supports SATA translation, so commands “pass through” the bridge to the drive itself. This
tool can provide both detailed information as well as powerful commands to set options on
a disk. Some of these options are useful for forensic examiners.

First, however, we are looking for information. For that we can use the simple hdparm

command with the -I option on our subject disk, /dev/sdb. This gives detailed information
about the disk that we can redirect to a file for our records.

root@forensicbox:~# hdparm -I /dev/sdd

/dev/sdd:

ATA device, with non-removable media

Model Number: WDC WD800HLFS-75G6U1

Serial Number: WD-WXD0CB928540

Firmware Revision: 04.04V03

Transport: Serial, SATA 1.0a, SATA II Extensions, SATA Rev 2.5

Standards:

Supported: 8 7 6 5

Likely used: 8

Configuration:

Logical max current

cylinders 16383 16383

heads 16 16

sectors/track 63 63

--

CHS current addressable sectors: 16514064

LBA user addressable sectors: 156250000

LBA48 user addressable sectors: 156250000

Logical/Physical Sector size: 512 bytes

115

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

device size with M = 1024*1024: 76293 MBytes

device size with M = 1000*1000: 80000 MBytes (80 GB)

cache/buffer size = 16384 KBytes

Nominal Media Rotation Rate: 10000

Capabilities:

LBA, IORDY(can be disabled)

Queue depth: 32

Standby timer values: spec’d by Standard, with device specific minimum

R/W multiple sector transfer: Max = 16 Current = 0

Recommended acoustic management value: 128, current value: 254

DMA: mdma0 mdma1 mdma2 udma0 udma1 udma2 udma3 udma4 udma5 *udma6

Cycle time: min=120ns recommended=120ns

PIO: pio0 pio1 pio2 pio3 pio4

Cycle time: no flow control=120ns IORDY flow control=120ns

Commands/features:

Enabled Supported:

* SMART feature set

Security Mode feature set

* Power Management feature set

* Write cache

* Look-ahead

* Host Protected Area feature set

* WRITE_BUFFER command

* READ_BUFFER command

* NOP cmd

* DOWNLOAD_MICROCODE

SET_MAX security extension

* Automatic Acoustic Management feature set

* 48-bit Address feature set

* Device Configuration Overlay feature set

* Mandatory FLUSH_CACHE

* FLUSH_CACHE_EXT

* SMART error logging

* SMART self-test

* General Purpose Logging feature set

* WRITE_{DMA|MULTIPLE}_FUA_EXT

* 64-bit World wide name

* WRITE_UNCORRECTABLE_EXT command

* {READ,WRITE}_DMA_EXT_GPL commands

* Segmented DOWNLOAD_MICROCODE

* Gen1 signaling speed (1.5Gb/s)

* Gen2 signaling speed (3.0Gb/s)

* Native Command Queueing (NCQ)

* Phy event counters

DMA Setup Auto-Activate optimization

* Software settings preservation

* SMART Command Transport (SCT) feature set

116

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

* SCT Read/Write Long (AC1), obsolete

* SCT Write Same (AC2)

* SCT Error Recovery Control (AC3)

* SCT Features Control (AC4)

* SCT Data Tables (AC5)

unknown 206[12] (vendor specific)

unknown 206[13] (vendor specific)

Security:

Master password revision code = 65534

supported

not enabled

not locked

not frozen

not expired: security count

supported: enhanced erase

14min for SECURITY ERASE UNIT. 14min for ENHANCED SECURITY ERASE UNIT.

Logical Unit WWN Device Identifier: 50014ee001ffdba8

NAA : 5

IEEE OUI : 0014ee

Unique ID : 001ffdba8

Checksum: correct

There’s a lot of information laid out for us by hdparm. By comparing the first few lines (bold
for emphasis) to the photograph of the disk label shown previously, we’ve again confirmed
we are collecting information from the correct disk. This command can be redirected to a
file and saved to our case folder:

root@forensicbox:~# cd /mnt/evidence/case1

root@forensicbox:case1:~# pwd

/mnt/evidence/case1

root@forensicbox:case1:~# hdparm -I /dev/sdd > case1.disk1.hdparm.txt

root@forensicbox:case1:~# ls

case1.disk1.hdparm.txt

In the second command above, we’ve redirected (>) the output of hdparm -I /dev/sdd to a
file in the case1 directory12. The file is called case1.disk1.hdparm.txt. The last command
lists the contents of the case1 directory. If we had multiple disks, then we could have output
for disk2, disk3, etc. The file naming here is arbitrary. This is just an example.

You can keep a running log of things that you do by using a double redirect (>>) symbol
12You’ll notice the command prompt in my example is only showing case1 (the base directory) rather

than the entire path. I’ve adjusted the prompt to keep the command line examples smaller. Your prompt
might show the entire path

117

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

to add all the case info to a single log. I would suggest not taking this approach as you
learn, though. If you mistakenly use a single redirect (>) you risk clobbering an entire log file
(recall that we can use our previously discussed chattr +a command to prevent this, setting
the file to append only).

We can also use the hdparm tool to help identify disk configuration overlays or host protected
areas (DCO or HPA, respectively). Manufacturers use these to change the number of sectors
available to the user, sometimes to make differing drives match in size for marketing (DCO),
and sometimes for hiding things like “restore” or “recovery” partitions (HPA). The history
and specifics of these areas are well documented on the Internet. If you have not heard of
them, do some research. As forensic examiners, we are always interested in acquiring the
entire disk (or at least those areas we can nominally access through kernel tools). There are
even deeper areas on disks that we will not address here if imaging only the kernel accessible
areas are insufficient.

hdparm can tell us if there is a DCO (and the changes actually implemented by the DCO).
These can be manipulated using hdparm as well, but I will leave those advanced topics to
your own research (hint: read man hdparm).

In this case we see we have no HPA:

root@forensicbox:~# hdparm -N /dev/sdd

/dev/sdd:

max sectors = 156250000/156250000, HPA is disabled

Output from hdparm would be different if an HPA is present (shown here on a Seagate disk):

root@forensicbox:~# hdparm -N /dev/sdf

/dev/sdd:

max sectors = 41943040/78125000, HPA is enabled

And the output from hdparm -I run against /dev/sdi would show only 41943040 (partial
output for brevity):

root@forensicbox:~# hdparm -I /dev/sdf

/dev/sdf:

ATA device, with non-removable media

Model Number: ST340014AS

Serial Number: 5MQ0QS22

Firmware Revision: 8.12

...

LBA user addressable sectors: 41943040

118

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

LBA48 user addressable sectors: 41943040

Logical/Physical Sector size: 512 bytes

...

Read the hdparm man page carefully and be aware of the options and conditions under which
a DCO or HPA can be detected and removed. For example, restoring the full number of
sectors on /dev/sdf would look like this.

root@forensicbox:~# hdparm N78125000 /dev/sdf

/dev/sdf:

setting max visible sectors to 78125000 (temporary)

max sectors = 78125000/78125000, HPA is disabled

Should you come across a disk with an HPA or DCO, I would suggest, as the safest course
of action, acquiring an image as the disk sits. Once an image of the disk is obtained, you
can pass commands to remove protected areas and re-image.

8.5 Hashing Media

One important step in any evidence collection is verifying the integrity of your data both
before and after the acquisition is complete. You can get a hash (MD5, or SHA) of the
physical device in a number of different ways.

There are a number of hash algorithms and tools that implement them, including :

• md5sum - 128 bit checksum

• sha1sum - 160 bit checksum

• sha224sum - 224 bit checksum

• sha256sum - 256 bit checksum

• sha384sum - 384 bit checksum

• sha512sum - 512 bit checksum

In this example, we will use the SHA1 hash. SHA1 is a hash signature generator that supplies
a 160 bit “fingerprint” of a file or disk (which is represented by a file-like device node). It is
not feasible for someone to computationally recreate a file based on the SHA1 hash. This
means that matching SHA1 signatures mean identical files. There has been a lot of talk
in the digital forensic community over the years of (even recent) proof of “collisions” that
render certain hash algorithms “obsolete”. This guide is about learning the tools. Do your

119

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

research and check your agency or community guidelines for additional information on which
algorithm to select.

We can collect a SHA1 hash of a disk by running the following command (the following
commands can be replaced with md5sum if you prefer to use the MD5 hash algorithm, or any
of the other above listed checksum tools):

root@forensicbox:case1:~# sha1sum /dev/sdd

ddddda4252d1adeffa267636b1ae0fbf40c9d3b3 /dev/sdd

or

root@forensicbox:case1:~# sha1sum /dev/sdd > case1.disk1.sha1.txt

root@forensicbox:case1:~# cat case1.disk1.sha1.txt

ddddda4252d1adeffa267636b1ae0fbf40c9d3b3 /dev/sdd

The redirection in the second command allows us to store the signature in a file and use it
for verification later on. To get a hash of a raw disk (/dev/sdc, /dev/sdd, etc.) the disk does
NOT have to be mounted. We are hashing the device (the disk) not the contents. As we
discussed earlier, Linux treats all objects, including physical disks, as files. So whether you
are hashing a file or a hard drive, the command is the same.

8.6 Collecting a Forensic Image with dd

Now that we have collected information on our subject media and obtained a hash of the
physical disk for verification purposes, we can begin our acquisition.

dd is the very basic data copying utility that comes with a standard GNU/Linux distribution.
There are, no doubt, some better imaging tools out there for use with Linux, but dd is the old
standby. We’ll be covering some of the more forensic oriented imaging tools in the following
sections, but learning dd is important for much the same reason as learning vi. Like vi, you
are bound to find dd on just about any Unix machine you might come across. In some cases,
the best imaging tool you have available might just be the one you will almost always have
access to.

This is your standard forensic image of a suspect disk. The dd command will copy every bit
from the kernel accessible areas of the media to the destination of your choice (a physical
device or file). There are a couple of concepts to keep in mind when using dd. Some of these
concepts also apply to the other forensic imaging tools we will cover. In very basic form, the
dd command looks like this:

dd if=/dev/sdd of=/path/to/evidence.raw bs=512

120

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

• Input file (if=): this is the source media. What we are imaging.

– if=/dev/sdd

∗ Disk image (/dev/sdx): We can use the name for the entire device node.
∗ Partition image (/dev/sdx#): We can use the device name and the partition

number to image a single partition/file system. # is the partition number (as
returned by fdisk -l, for example).

• Output file (of=): this is the destination. Where we are placing the image/copy.

– of=/path/to/evidence.raw

– Output can be a file (as above). This is most common.
– Output can be a physical device. This is often referred to as a “clone”.

• Block size (bs=): The block size of the device being imaged. The kernel usually handles
this. This may become a future issue as block sizes change with the evolution of storage
media. For our current subject disk (/dev/sdd), the hdparm -I output is showing 512
bytes per sector (Logical/Physical Sector Size). Be aware of some newer devices that
are using 2048 bytes per sector.

• Progress indication.

– status=progress This option provides a nice updating status line that shows the
progress of your imaging. A relatively recent addition to the dd options.

• There are also options that are often used to avoid problems in case there are bad
sectors on the disk.

– conv=noerror,sync This option instructs dd to by pass copying sectors with errors
AND pad those matching sectors in the destination with zeros. The padding keeps
offsets correct in any file system data and perhaps still result in a usable image
(more on this later). I’m not a fan of using this option.

As part of our case organization, we’ll make a new directory called images in our case1

directory. This is where we will keep working copies of our images. Normally, you would
create images directly to either a larger drive that has been sanitized, or to a network storage
volume that is used to maintain original copies. That will depend on your specific policies.

In this case, for illustration, we will image directly to our case1/images directory. I prefer
keeping images separate as it allows protecting the directory with attributions that prevent
changes or deletions to our working copy image files, once we’ve completed the imaging
process. This is personal preference, though.

To keep our dd command line shorter, we’ll change into our case1/images directory and write
our output file here. Without needing to specify the directory (we are writing to the current
directory), we keep the command line shorter and easier to read.

121

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

root@forensicbox:case1# mkdir images

root@forensicbox:case1# cd images

root@forensicbox:images# pwd

/mnt/evidence/case1/images

root@forensicbox:images# dd if=/dev/sdd of=case1.disk1.raw bs=512

79975662080 bytes (80 GB, 74 GiB) copied, 2168 s, 36.9 MB/sk^[^[

156250000+0 records in

156250000+0 records out

80000000000 bytes (80 GB, 75 GiB) copied, 2169.67 s, 36.9 MB/s

This takes your disk device /dev/sdd as the input file if and writes the output file called
case1.disk1.raw in the current directory /mnt/evidence/case1/images. The bs option spec-
ifies the block size. This is really not needed for most block devices (hard drives, etc.) as
the Linux kernel handles the actual block size. It’s added here for illustration, as it can be
a useful option in many situations (discussed later). Try the above command again with
status=progress to watch for updates on how near to completion the imaging is.

Using dd creates an exact duplicate of the physical device file. This includes all the file slack
and unallocated space. We are not simply copying the logical file structure. Unlike many
forensic imaging tools, dd does not fill the image with any proprietary data or information.
It is a simple bit stream copy from start to end. This has a number of advantages, as we
will see later.

You can see from our output above that dd read in the sames number of records (512 byte
blocks, in this case) as the number of sectors for this disk previously reported by hdparm -I,
156250000. To verify your image, we can do the following: We want to recall the hash we
obtained from the original device (/dev/sdd), which we stored in the file case1.disk1.sha1.

↪→ txt and compare that to the hash of the image file we just obtained.

root@forensicbox:images# cat ../case1.disk1.sha1.txt

ddddda4252d1adeffa267636b1ae0fbf40c9d3b3 /dev/sdd

root@forensicbox:images# sha1sum case1.disk1.raw

ddddda4252d1adeffa267636b1ae0fbf40c9d3b3 case1.disk1.raw

You can see the two hashes match, verifying our image as a true copy of the original drive.
Take note of the first command. Remember that we are currently in the /mnt/evidence/case1

↪→ /images directory. The hash file case1.disk1.sha1.txt is stored in the parent directory,
/mnt/evidence/case1. When we issue our cat command (stream the contents of a file), we
use the ../ notation to indicate that the file we are calling is in the parent directory (..).

This is the simplest use case for dd.

122

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

8.6.1 dd and Splitting Images

It has become common practice in digital forensics to split the output of our imaging. This
is done for a number of reasons, either for archiving or for use in another program. We will
first discuss using split on its own, then in conjunction with dd for “on the fly” splitting.

For example, we have our 80GB image and we now want to split it into 4GB parts so they
can be written to other media. Or, if you wish to store the files on a file system with file size
limits and need a particular size, you might want to split the image into smaller sections.

For this we use the split command.

The split command normally works on lines of input (i.e. from a text file). But if we use
the-b option, we force split to treat the file as binary input and lines are ignored. We can
specify the size of the files we want along with the prefix we want for the output files. split

can also use the -d option to give us numerical numbering (*.01, *.02, *.03, etc.) for the
output files as opposed to alphabetical (*.aa, *.ab, *.ac, etc.). The -a option specifies the
suffix length. The command looks like:

split -d -aN -bXG <file to be split> <prefix of output files>

where N is the length of the extension (or suffix) we will use and X is the size of the resulting
files with a unit modifier (K, M, G, etc.). With our image of /dev/sdc, we can split it into
4GB files using the following command (The last file will be sized for the remainder of the
volume if it’s not an exact multiple of your chosen size.):

root@forensicbox:images# split -d -a3 -b4G case1.disk1.raw case1.disk1.split.

This would result in a group of files (4GB in size) each named with the prefix case1.split1

↪→ as specified in the command, followed by .000, .001, .002, and so on. The -a option
with 3 specifies that we want the extension to be at least 3 digits long. Without -a 3, our
files would be named *.01, *.02, *.03, etc. Using 3 digits maintains consistency with other
tools13. Note the trailing dot in our output file name. We do this so the suffix is added as a
file extension rather than as a suffix string appended to the end of the name string.

root@forensicbox:images# ls -lh case1.disk1.split.*
-rw-r--r-- 1 root root 4.0G Jul 8 07:00 case1.disk1.split.000

-rw-r--r-- 1 root root 4.0G Jul 8 07:01 case1.disk1.split.001

-rw-r--r-- 1 root root 4.0G Jul 8 07:02 case1.disk1.split.002

-rw-r--r-- 1 root root 4.0G Jul 8 07:04 case1.disk1.split.003

-rw-r--r-- 1 root root 4.0G Jul 8 07:05 case1.disk1.split.004

13some forensic software suites will not recognize split images that are named with other than a three
character extension.

123

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

-rw-r--r-- 1 root root 4.0G Jul 8 07:06 case1.disk1.split.005

-rw-r--r-- 1 root root 4.0G Jul 8 07:07 case1.disk1.split.006

-rw-r--r-- 1 root root 4.0G Jul 8 07:08 case1.disk1.split.007

-rw-r--r-- 1 root root 4.0G Jul 8 07:10 case1.disk1.split.008

-rw-r--r-- 1 root root 4.0G Jul 8 07:11 case1.disk1.split.009

-rw-r--r-- 1 root root 4.0G Jul 8 07:12 case1.disk1.split.010

-rw-r--r-- 1 root root 4.0G Jul 8 07:13 case1.disk1.split.011

-rw-r--r-- 1 root root 4.0G Jul 8 07:14 case1.disk1.split.012

-rw-r--r-- 1 root root 4.0G Jul 8 07:15 case1.disk1.split.013

-rw-r--r-- 1 root root 4.0G Jul 8 07:17 case1.disk1.split.014

-rw-r--r-- 1 root root 4.0G Jul 8 07:18 case1.disk1.split.015

-rw-r--r-- 1 root root 4.0G Jul 8 07:19 case1.disk1.split.016

-rw-r--r-- 1 root root 4.0G Jul 8 07:20 case1.disk1.split.017

-rw-r--r-- 1 root root 2.6G Jul 8 07:21 case1.disk1.split.018

The process can be reversed. If we want to reassemble the image from the split parts, we can
use the cat command and redirect the output to a new file. Remember cat simply streams
the specified files to standard output. If you redirect this output, the files are assembled into
one.

root@forensicbox:images# cat case1.disk1.split*> case1.disk1.new.raw

In the above command we’ve re-assembled the split parts into a new 80GB image file. The
original split files are not removed, so the above command will essentially double your space
requirements if you are writing to the same mounted device/directory.

The same cat command can be used to check the hash of the resulting image sections by
streaming all the parts of the image through a pipe to our hash command:

root@forensicbox:images# cat case1.disk1.split*| sha1sum

ddddda4252d1adeffa267636b1ae0fbf40c9d3b3 -

Once again, we see that the hash remains unchanged. The – at the end of the output denotes
that we took our input from stdin, not from a file or device. In the command above, sha1sum
receives its input directly from the cat command through the pipe.

Another way of accomplishing multi-segment images would be to split the image as we create
it (directly from a dd command). This is essentially the “on the fly” splitting we mentioned
earlier. We do this by piping the output of the dd command straight to split, omitting the
of= portion of the dd command. Assuming our subject drive is /dev/sdd, we would use the
command:

root@forensicbox:images# dd if=/dev/sdd | split -d -a3 -b4G - case1.disk1.split.

156250000+0 records in

124

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

156250000+0 records out

80000000000 bytes (80 GB, 75 GiB) copied, 1146.87 s, 69.8 MB/s

Here, instead of giving the name of the file to be split in the split command, we give a
simple - (after the 4G, where we had the input name in our previous example). The single
dash is a descriptor that means “standard input”. In other words, the command is taking its
input from the data pipe provided by the standard output of dd instead of from a file. Any
options you want to pass to dd (block size, count, etc.) go before the pipe. The output above
shows the familiar number of sectors is correct for the disk we are imaging (156250000).

Once we have the image, the same technique using cat will allow us to reassemble it for
hashing or analysis as we did with the split images above.

For practice, you can use a small USB thumb drive if you have one available and try this
method on that device, splitting it into a reasonable number of parts. You can use any
sample drive, being sure to replace our device node in the following command with /dev/sdx

(where x is your thumb drive or other media). Obtain a hash first, so that you can compare
the split files and the original and make sure that the splitting changes nothing.

This next example uses a 2GB USB drive that is arbitrarily split into 512M section. Fol-
low along with the commands, and experiment with options while watching changes in the
resulting output. It’s the best way to learn. We’ll start by identifying the thumb disk with
lsscsi as soon as it’s plugged in (output is abbreviated for readability):

root@forensicbox:~# lsscsi

...

[3:0:0:0] disk Generic USB Flash Drive 1.00 /dev/sdb

...

root@forensicbox:~# sha1sum /dev/sdb

b4531adb315a48329c9b05361bf66794dd50ca27 /dev/sdb

root@forensicbox:~# dd if=/dev/sdb | split -d -a3 -b512M - thumb.split.

4156416+0 records in

4156416+0 records out

2128084992 bytes (2.1 GB, 2.0 GiB) copied, 153.338 s, 13.9 MB/s

root@forensicbox:~# ls -lh thumb.split.*| sha1sum

total 2.0G

-rw-r--r-- 1 root root 512M Jul 8 06:03 thumb.split.000

-rw-r--r-- 1 root root 512M Jul 8 06:03 thumb.split.001

-rw-r--r-- 1 root root 512M Jul 8 06:04 thumb.split.002

-rw-r--r-- 1 root root 494M Jul 8 06:05 thumb.split.003

root@forensicbox:~# cat thumb.split.*| sha1sum

b4531adb315a48329c9b05361bf66794dd50ca27 -

125

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

Looking at the output of the above commands, we firsts see that the thumb drive that was
plugged in is identified as a Generic USB Flash Drive’. We then hash the device, image and
split on the fly with dd, and check the hash. We find the same hash for the disk, for the split
images “cat-ed” together, and for the newly reassembled image.

We’ll have some more fun with this command later on. It is more than just an imaging tool.

8.7 Alternative Imaging Tools

Standard Linux dd is a fine imaging tool. It is robust, well tested, and has a proven track
record.

As good as dd is as an imaging tool, it has one simple, perceived flaw: It was never actually
designed to be used for forensic acquisitions. While the word "flaw" is a little harsh, we
need to know that as much as the digital forensics community refer to dd as an "imaging"
tool, that is not what it was designed for. It is very capable, but some practitioners prefer
full featured, dedicated imaging tools that do not require external programs to accomplish
logging, hashing, and imaging error documentation. Additionally, dd is not the best solution
for obtaining evidence from damaged or failing media.

There are a number of forensic specific tools out there for Linux users that wish to acquire
evidence. Some of these tools include:

• dc3dd – enhanced dd – program for forensic use (based on dd code).

• dcfldd – enhanced dd program for forensic use (fork of dd code).

• ewfacquire – Provided as part of the libewf project, this tool is used to acquire Expert
Witness Format (EWF) images. We will cover it in some detail later.

• ddrescue – An imaging tool specifically designed to recover data from media exhibiting
errors (not to be confused with dd_rescue).

• aimage – forensic imaging tool provided primarily to create images in the Advanced
Forensic Format (AFF).

This is not an exhaustive list. These, however, are some of the more commonly used (as
far as I know). We will cover dc3dd, ewfacquire, and ddrescue in this document. There are
other common imaging tools that run in a GUI as well (Guymager, for example 14), but I
will leave the GUI programs to the reader’s own research (for the most part).

14https://guymager.sourceforge.io/

126

https://guymager.sourceforge.io/

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

8.7.1 dc3dd

The first alternative imaging tool we will cover is dc3dd. This imaging tool is based on
original (patched) code from dd. It is very similar to the popular dcfldd but provides a slightly
different feature set. My choice of whether to cover either dcfldd or dc3dd is largely arbitrary.
dc3dd is maintained by the DoD (Department of Defense) Cyber Crime Center (other wise
known as Dc3)15 Regardless of which (dc3dd or dcfldd) you prefer, familiarity with one of
these tools will translate very nicely to the other with some reading and experimentation,
as they are very similar. While there are some significant differences, many of the features
we discuss in this section are common to both dc3dd and dcfldd.

The source package and more information for dc3dd can be found at https://sourceforge.
net/projects/dc3dd/.

dc3dd is installed by default on recent versions of Slackware. If you are using a different
distribution, check your package manager’s repository.

The man page for dc3dd is concise and easy to read. All the information you need to use the
advanced features of this imaging tool are neatly laid out for you.

Let’s have a look at the basic usage of dc3dd. As you read through the usage section of the
man page, you’ll notice a number of additions to regular dd for the forensic examiner. Let’s
concentrate on these notables additions:

hof=FILE or DEVICE

• similar to the of= parameter of dd

• hashes the input bytes
• hashes the output bytes
• writes the output to the specified destination

ofs=BASE.FMT

• similar to the of= parameter of dd

• split the output file
• use the name BASE for the output files
• use the extension FMT for the output files
• FMT is numerical or alphabetical
• more on this below

hofs=BASE.FMT

• hash and split the output file. This is essentially a
combination of the two parameters above.

15dcfldd is also named for the Defence Computer Forensics Lab

127

https://sourceforge.net/projects/dc3dd/
https://sourceforge.net/projects/dc3dd/

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

ofsz=BYTES

• output file size
• when using either ofs or hofs, this parameter sets the

size of each split file.
• see the man page for proper usage

hash=ALGORITHM

• specify the algorithm we will use to hash input/output
bytes (md5, sha1, sha256, etc.) when we use hof or
hofs.

log=FILE

• write an acquisition log to FILE

hlog=FILE

• write a hash log of the image and any split files to
FILE

If we redo our imaging of /dev/sdd (our original 80GB disk) using dc3dd with simple if= and
of= parameters, as we used with dd, the session would look something like this. We are still
in our ~/case1/images directory.

root@forensicbox:images# dc3dd if=/dev/sdc of=case1.disk1.dc3dd.raw

dc3dd 7.2.646 started at 2019-07-08 08:31:35 -0400

compiled options:

command line: dc3dd if=/dev/sdd of=case1.disk1.dc3dd.raw

device size: 156250000 sectors (probed), 80,000,000,000 bytes

sector size: 512 bytes (probed)

80000000000 bytes (75 G) copied (100%), 855 s, 89 M/s

input results for device ‘/dev/sdd’:

156250000 sectors in

0 bad sectors replaced by zeros

output results for file ‘case1.disk1.dc3dd.raw’:

156250000 sectors out

dc3dd completed at 2019-07-08 08:45:50 -0400

Our input file is still the disk sdd (if=/dev/sdd), our output file is now case1.disk1.dc3dd

↪→ .raw (of=case.disk1.dc3dd.raw). One of the first things you notice right away is that
dc3dd returns more usable information while the program is running. It gives you a very nice

128

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

progress indicator. We also see immediately that the correct number of sectors for /dev/sdd

were captured (156250000), and that there were no "bad" sectors detected. The start and
stop time stamps are also added by default. If you specify a log file, this information is all
captured very nicely. We will look at the hashing options and logging in more detail in just
a moment.

This verbose output and the availability of simple logging is one of the things that makes
dc3dd a better candidate for general forensic imaging when compared to dd.

As mentioned, dc3dd can incorporate the hashing, splitting and logging of an acquisition into
a single command. All of this can be done with regular dd and external tools (with pipes,
redirection or scripting) but many practitioners prefer an integrated approach. Additionally,
the standard options available to the regular dd command still are readily available in dc3dd

(bs, skip, etc.).

More than just incorporating the other steps into a single command, dc3dd extends the
functionality. For example, using a regular split command with dd as we did in a previous
exercise, we can either allow the default alphabetic naming convention of split, or pass the
-d option to provide us with decimal extensions on our files. In contrast, dc3dd allows us
to not only define the size of each split as an option to the imaging command (using ofsz)
without need for a piped command, but it also allows more granular control over the format
of the extensions each split will have as part of its filename. So, to our 80GB disk into 4GB
sections, I would simply use:

ofs=BASENAME.FMT ofsz=4G

The ofs parameter is essentially "output file split". The extension following the output files
names is directly formatted in the command itself. According to the dc3dd man page:

...

4. FMT is a pattern for a sequence of file extensions that can be numerical

starting at zero, numerical starting at one, or alphabetical.

Specify FMT by using a series of zeros, ones, or a’s,

respectively. The number of characters used indicates the

desired length of the extensions. For example, a FMT

specifier of 0000 indicates four character numerical

extensions starting with 0000.

...

So if I issue the base command as something like this:

dc3dd if=/dev/sdd ofs=filename.FMT ofsz=32M

129

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

I can adjust the values for FMT and my split file extensions would change accordingly:

FMT=aa
• filename.aa

• filename.ab

• filename.ac

FMT=aaa
• filename.aaa

• filename.aab

• filename.aac

FMT=00
• filename.00

• filename.01

• filename.02

FMT=000
• filename.000

• filename.001

• filename.002

In addition, when using regular GNU dd, our hashing functions are performed external to
the imaging, by either the md5sum or sha1sum commands, depending on the analyst preference
for algorithm. dc3dd allows the user to run BOTH hashes concurrently on an acquisition and
log the hashes. Before we run our split images with dc3dd, lets look at the hashing options
a little closer.

We select our hash algorithm with the option hash=, specifying any of md5, sha1, sha256,
sha512, or a comma separated list of algorithms. In this way you can select multiple hash
methods for a single image file. These will be written to a log file we indicate, a special hash
log, or to standard output if no log is specified.

dc3dd also provides hof and hofs parameters. The hof option acts much like of, but hashes
the output, compares it to the input and records it. You must select a hash algorithm.
Likewise, hofs acts much like ofs, splitting the output into chunk sizes specified by ofsz.
The hofs option differs in that it also hashes each of the input/output streams and compares
and logs them for each chunk.

You can pass the log=filename parameter to log all output in a single place, or you can log
hashes separately using the hlog=filename option.

Let us redo our dd example with the 2G thumb drive. This time we will use dc3dd. We
will discuss the options and output below. We are running these commands in root’s home

130

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

directory (or any directory of your choosing - so we don’t get the resulting image files confused
with our case1 data).

root@forensicbox:~# lsscsi

...

[5:0:0:0] disk Generic USB Flash Drive 1.00 /dev/sdb

...

root@forensicbox:~# sha1sum /dev/sdb

b4531adb315a48329c9b05361bf66794dd50ca27 /dev/sdb

root@forensicbox:~# dc3dd if=/dev/sdb hofs=thumb.dc3dd.000 ofsz=512M hash=sha1
hash=md5 log=thumb.dc3dd.log

dc3dd 7.2.646 started at 2019-07-08 10:03:24 -0400

compiled options:

command line: dc3dd if=/dev/sdb hofs=thumb.dc3dd.000 ofsz=512M hash=sha1 hash=md5

↪→ log=thumb.dc3dd.log

device size: 4156416 sectors (probed), 2,128,084,992 bytes

sector size: 512 bytes (probed)

2128084992 bytes (2 G) copied (100%), 183 s, 11 M/s

2128084992 bytes (2 G) hashed (100%), 7 s, 282 M/s

input results for device ‘/dev/sdb’:

4156416 sectors in

0 bad sectors replaced by zeros

6662cd15f59767e5eb1378b71dc20f68 (md5)

4ae688f36ccef38b3cee374d8d9f79f5, sectors 0 - 1048575

5077e2575359eecda7782b0c2215b4ab, sectors 1048576 - 2097151

ae6dc7d9832550de29965e4c90286fac, sectors 2097152 - 3145727

248e734b964c3cfcac8ce88017ffb1c2, sectors 3145728 - 4156415

b4531adb315a48329c9b05361bf66794dd50ca27 (sha1)

8a60b96ef1e46272f3c9de0becd93768074918e4, sectors 0 - 1048575

c7bc3a35ff023c47c69ac037cff60bb0e055fd0f, sectors 1048576 - 2097151

c2ea65f9b27e11a4657950239f7fba918e350aa7, sectors 2097152 - 3145727

6d83e285369cab5d8bda105fd8fdca29e8210f69, sectors 3145728 - 4156415

output results for files ‘thumb.dc3dd.000’:

4156416 sectors out

[ok] 6662cd15f59767e5eb1378b71dc20f68 (md5)

[ok] 4ae688f36ccef38b3cee374d8d9f79f5, sectors 0 - 1048575, ‘thumb.dc3dd.000’

[ok] 5077e2575359eecda7782b0c2215b4ab, sectors 1048576 - 2097151, ‘thumb.dc3dd.001’

[ok] ae6dc7d9832550de29965e4c90286fac, sectors 2097152 - 3145727, ‘thumb.dc3dd.002’

[ok] 248e734b964c3cfcac8ce88017ffb1c2, sectors 3145728 - 4156415, ‘thumb.dc3dd.003’

] b4531adb315a48329c9b05361bf66794dd50ca27 (sha1)

[ok] 8a60b96ef1e46272f3c9de0becd93768074918e4, sectors 0 - 1048575, ‘thumb.dc3dd

↪→ .000’

[ok] c7bc3a35ff023c47c69ac037cff60bb0e055fd0f, sectors 1048576 - 2097151, ‘thumb.

↪→ dc3dd.001’

131

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

[ok] c2ea65f9b27e11a4657950239f7fba918e350aa7, sectors 2097152 - 3145727, ‘thumb.

↪→ dc3dd.002’

[ok] 6d83e285369cab5d8bda105fd8fdca29e8210f69, sectors 3145728 - 4156415, ‘thumb.

↪→ dc3dd.003’

dc3dd completed at 2019-07-08 10:06:27 -0400

The options used above are:

if=/dev/sdb : Our source device, as indicated by the output of
lsscsi (or lsblk)

hofs=thumb.dc3dd.000 : Our output file BASE and FMT. Using the hofs

option indicates that we want hashes and splits of
the output file. The BASE is thumb.dc3dd. and the
format of our extension (FMT) will be numerical,
three digits.

ofsz=512M : Since we indicated split files (using hofs or ofs),
we need to specify an output file size.

hash=sha1, hash=md5 : Since we indicated hash the input and output
files (hofs or hof), we need to provide the algo-
rithm we want. In this case we are illustrating
that we can use TWO algorithms, and both will
be calculated and recorded.

log=thumb.dc3dd.log : Indicates that we want the output of dc3dd

logged to a file that we specify. Note that you
can log hashes separately using hlog.

The resulting output (shown by our ls command below) gives us 4 split image files, with
numerical extensions starting with 000. We also have a log file of our hashes and any error
messages, which we can view with less or cat:

root@forensicbox:~# ls -lh thumb.dc3dd.*
total 2.0G

-rw-r--r-- 1 root root 512M Jul 8 10:04 thumb.dc3dd.000

-rw-r--r-- 1 root root 512M Jul 8 10:04 thumb.dc3dd.001

-rw-r--r-- 1 root root 512M Jul 8 10:05 thumb.dc3dd.002

-rw-r--r-- 1 root root 494M Jul 8 10:06 thumb.dc3dd.003

-rw-r--r-- 1 root root 2.1K Jul 8 10:06 thumb.dc3dd.log

As previously discussed, the log file contains our hashes and our error messages. For the
hashes, the input hash from the imaged device are displayed first (for each hash algorithm
we requested). Then the output hashes are displayed for each of the output files. If the input
hash matches the output hash for a given range (or the whole device), the output hash is
preceded with [ok] so you do not have to manually compare the output.

132

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

The log file ends with a time stamp for your documentation.

Another useful feature of dc3dd when compared to regular dd is the ability (without the use
of external pipes or piping programs) to collect multiple images at the same time. If logistics
allows, and there is a need to collect multiple copies on location to distribute to multiple
parties, we can create additional output files:

root@forensicbox:~# dc3dd if=/dev/sdb hof=thumbcopy.dc3dd hof=duplicate.dc3dd
hash=md5

dc3dd 7.2.646 started at 2019-07-08 12:15:15 -0400

compiled options:

command line: dc3dd if=/dev/sdb hof=thumbcopy.dc3dd hof=duplicate.dc3dd hash=md5

device size: 4156416 sectors (probed), 2,128,084,992 bytes

sector size: 512 bytes (probed)

2128084992 bytes (2 G) copied (100%), 179 s, 11 M/s

2128084992 bytes (2 G) hashed (100%), 3 s, 614 M/s

input results for device ‘/dev/sdb’:

4156416 sectors in

0 bad sectors replaced by zeros

6662cd15f59767e5eb1378b71dc20f68 (md5)

output results for file ‘thumbcopy.dc3dd’:

4156416 sectors out

[ok] 6662cd15f59767e5eb1378b71dc20f68 (md5)

output results for file ‘duplicate.dc3dd’:

4156416 sectors out

[ok] 6662cd15f59767e5eb1378b71dc20f68 (md5)

dc3dd completed at 2019-07-08 12:18:14 -0400

root@forensicbox:~# ls -lh *.dc3dd

-rw-r--r-- 1 root root 2.0G Jul 8 12:18 duplicate.dc3dd

-rw-r--r-- 1 root root 2.0G Jul 8 12:18 thumbcopy.dc3dd

The demonstration above illustrates collecting two images simultaneously. You can see we
selected to hash the output files (hof) using the md5 algorithm (hash=md5). The output shows
the single input stream was hashed, but there are two output streams, and each was hashed
and verified separately. This can be a very useful feature of dc3dd.

Remember that dc3dd outputs raw images. They can be hashed exactly the same as dd

output: Directly hashed with your hashing algorithm of choice (sha1sum, md5sum, etc.), or in
the case of split files, using the cat command to stream the output of multiple files to the
hash program.

133

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

Now we’ll continue our look at alternative imaging tools with a utility that is used to collect
and manipulate Expert Witness (E01 or EWF) files, one of the more ubiquitous formats used
in computer forensics today.

8.7.2 libewf and ewfacquire

There may be times when you are asked to perform examinations collected by someone else,
or perhaps your organization has elected to standardize on a given format for forensic images.
In any case, chances are you will eventually come across Expert Witness format files (EWF,
commonly referred to as “EnCase” format). There are many tools that can read, convert or
work with these images. In this section we will learn to acquire and manipulate evidence in
the EWF format.

We will explore a set of tools here belonging to the libewf project. These tools provide the
ability to create, view, convert and work with expert witness evidence containers.

One of the benefits of covering libewf before other advanced forensic utilities is because
it needs to be installed first in order to supply the required libraries for other packages to
support EWF image formats. The libewf tools and detailed project information can be
found at https://github.com/libyal/libewf/

We will start by installing libewf using sbotools. Check your distribution documentation,
or the install instructions at the website shown above if you are using a distribution other
than Slackware. The installation is simple. libewf has no additional requirements (you can
view the info file with sbofind -tei libewf). When you start the installation process be
sure to take the time to read the READMEfile that displays.

root@forensicbox:~# sboinstall libewf

libewf (libYAL Expert Witness Compression library)

libewf allows you to read media information of EWF

files in the SMART (EWF-S01) format and the EnCase (EWF-E01) format.

libewf allows reading files created by EnCase 1 to 6, linen and FTK

Imager.

Proceed with libewf? [y]

Are you sure you wish to continue? [y]

...

Executing install script for libewf-20140806-x86_64-1_SBo.tgz.

Package libewf-20140806-x86_64-1_SBo.tgz installed.

Cleaning for libewf-20140806...

134

https://github.com/libyal/libewf/

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

Once the download, compile, build, and installation of the resulting package is complete, the
actual tools are placed in /usr/bin. We will have a closer look at the following:

• ewfacquire

• ewfverify

• ewfinfo

• ewfexport

• ewfacquirestream (in a later section)

We’ll start with the ewfacquire command used to create EWF files that can be used in other
programs. The easiest way to describe how ewfacquire works is to watch it run. There are a
number of options available. To get a list of options (there are many), just run ewfacquire

↪→ -h. To obtain an image, simply issue the command with the name of the file or physical
device you wish to image. Unless you memorize or script the options, this is the easiest way
to run the program. You are prompted for required information, to be stored with the data
in the EWF format (the below output is interactive):

root@forensicbox:~# lsscsi

[5:0:0:0] disk Generic USB Flash Drive 1.00 /dev/sdb

root@forensicbox:~# ewfacquire /dev/sdb

ewfacquire 20140806

Device information:

Bus type: USB

Vendor:

Model:

Serial:

Storage media information:

Type: Device

Media type: Fixed

Media size: 2.1 GB (2128084992 bytes)

Bytes per sector: 512

Acquiry parameters required, please provide the necessary input

Image path and filename without extension: case1.disk2

Case number: 2019-0001

Description: Thumb drive seized from bad guy

Evidence number: 2019-001-002

Examiner name: Barry J. Grundy

Notes:

135

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

Media type (fixed, removable, optical, memory) [fixed]:

Media characteristics (logical, physical) [physical]:

Use EWF file format (ewf, smart, ftk, encase1, encase2, encase3, encase4, encase5,

↪→ encase6, linen5, linen6, ewfx) [encase6]:

Compression method (deflate) [deflate]:

Compression level (none, empty-block, fast, best) [none]:

Start to acquire at offset (0 <= value <= 2128084992) [0]:

The number of bytes to acquire (0 <= value <= 2128084992) [2128084992]:

Evidence segment file size in bytes (1.0 MiB <= value <= 7.9 EiB) [1.4 GiB]: 512M

The number of bytes per sector (1 <= value <= 4294967295) [512]:

The number of sectors to read at once (16, 32, 64, 128, 256, 512, 1024, 2048, 4096,

↪→ 8192, 16384, 32768) [64]:

The number of sectors to be used as error granularity (1 <= value <= 64) [64]:

The number of retries when a read error occurs (0 <= value <= 255) [2]:

Wipe sectors on read error (mimic EnCase like behavior) (yes, no) [no]:

The following acquiry parameters were provided:

Image path and filename: case1.disk2.E01

Case number: 2019-0001

Description: Thumb drive seized from bad guy

Evidence number: 2019-001-002

Examiner name: Barry J. Grundy

Notes:

Media type: fixed disk

Is physical: yes

EWF file format: EnCase 6 (.E01)

Compression method: deflate

Compression level: none

Acquiry start offset: 0

Number of bytes to acquire: 1.9 GiB (2128084992 bytes)

Evidence segment file size: 512 MiB (536870912 bytes)

Bytes per sector: 512

Block size: 64 sectors

Error granularity: 64 sectors

Retries on read error: 2

Zero sectors on read error: no

Continue acquiry with these values (yes, no) [yes]:

...

Status: at 44%.

acquired 907 MiB (952074240 bytes) of total 1.9 GiB (2128084992 bytes).

completion in 1 minute(s) and 26 second(s) with 13 MiB/s

(13818733 bytes/second).

...

136

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

Status: at 99%.

acquired 1.9 GiB (2121498624 bytes) of total 1.9 GiB (2128084992 bytes).

completion in 1 second(s) with 13 MiB/s (13909052 bytes/second).

Acquiry completed at: Jul 08, 2019 14:46:35

Written: 1.9 GiB (2128085180 bytes) in 2 minute(s) and 32 second(s) with 13 MiB/s

↪→ (14000560 bytes/second).

MD5 hash calculated over data: 6662cd15f59767e5eb1378b71dc20f68

ewfacquire: SUCCESS

root@forensicbox:~# ls -lh

total 2.0G

-rw-r--r-- 1 root root 512M Jul 8 14:44 case1.disk2.E01

-rw-r--r-- 1 root root 512M Jul 8 14:45 case1.disk2.E02

-rw-r--r-- 1 root root 512M Jul 8 14:45 case1.disk2.E03

-rw-r--r-- 1 root root 495M Jul 8 14:46 case1.disk2.E04

In the above command session, user input is shown in bold. In places where there is no input
provided by the user, the defaults (shown in brackets) are used. Notice that ewfacquire gives
you several options for image formats that can be specified. The file(s) specified by the user
is given an E** extension and placed in the path directed by the user. Finally, an MD5 hash
is provided at the end of the output for verification. As with dc3dd, you also get a time
stamp for documentation.

You can also issue a single command and specify those options we used above on the command
line. For example, to get similar results, we can issue the following command:

root@forensicbox:~# ewfacquire -C "2019-001" -d sha1 -D "Thumb drive seized from
bad guy" -e "Barry J. Grundy" -E "2019-001-002" -m removable -M physical -S 512M
-t case1.disk2 -u /dev/sdb

ewfacquire 20140806

...

Status: at 98%.

acquired 1.9 GiB (2091614208 bytes) of total 1.9 GiB (2128084992 bytes).

completion in 3 second(s) with 12 MiB/s (13217919 bytes/second).

Acquiry completed at: Jul 08, 2019 15:13:07

Written: 1.9 GiB (2128085336 bytes) in 2 minute(s) and 40 second(s) with 12 MiB/s

↪→ (13300533 bytes/second).

MD5 hash calculated over data: 6662cd15f59767e5eb1378b71dc20f68

SHA1 hash calculated over data: b4531adb315a48329c9b05361bf66794dd50ca27

ewfacquire: SUCCESS

You can look at the individual options provided in the command above

137

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

by viewing man ewfacquire. Essentially this command allows us to run ewfacquire without
having to answer any prompts. The important options to note here are -d that allows us to
specify an additional checksum algorithm and -u (unattended mode) that forces ewfacquire

to use the defaults for options not specified. Make sure you know what you are doing before
running the command unattended.

Once acquired, the resulting files from ewfacquire are compatible with any software that will
read EWF format images. We’ll be using some forensic utilities later to do just that.

Let’s look now at ewfinfo and ewfverify. These two tools, also included with libewf,provide
information on any properly formatted EWF files you may come across.

ewfinfo simply reads the image metadata that was entered during the imaging process. It
will work with image files acquired using other EWF software as well, as long as it is in a
proper EWF format. For the files we just collected, using ewfacquire, the output would look
like this (Note the Operating system used and the Software version used):

root@forensicbox:~# ewfinfo case1.disk2.E01

ewfinfo 20140806

Acquiry information

Case number: 2019-001

Description: Thumb drive seized from bad guy

Examiner name: Barry J. Grundy

Evidence number: 2019-001-002

Acquisition date: Mon Jul 8 15:10:27 2019

System date: Mon Jul 8 15:10:27 2019

Operating system used: Linux

Software version used: 20140806

Password: N/A

EWF information

File format: EnCase 6

Sectors per chunk: 64

Error granularity: 64

Compression method: deflate

Compression level: no compression

Media information

Media type: removable disk

Is physical: yes

Bytes per sector: 512

Number of sectors: 4156416

Media size: 1.9 GiB (2128084992 bytes)

Digest hash information

MD5: 6662cd15f59767e5eb1378b71dc20f68

138

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

SHA1: b4531adb315a48329c9b05361bf66794dd50ca27

If you run ewfinfo on files collected using tools other than ewfacquire (EnCase under Win-
dows, for example), the output might look like this. Note the Operating system used and
Software version used fields. These give some hint as to how the files were created (EnCase
version 7 on Windows 7).

root@forensicbox:~# ewfinfo EnCaseImageSample.E01

ewfinfo 20140806

Acquiry information

Description: TestImage

Examiner name: Susan B. Analyst

Acquisition date: Fri Feb 17 13:59:50 2017

System date: Fri Jan 13 16:10:42 2017

Operating system used: Windows 7

Software version used: 7.10.05

Password: N/A

Model: ST2500

Serial number: 03-016831-C

Device label: WT055 12

Extents: 0

EWF information

File format: unknown

Sectors per chunk: 64

Error granularity: 64

Compression method: deflate

Compression level: best compression

Set identifier: ff582a89-3aba-cf46-a634-75edf9c15a97

Media information

Media type: physical

Is physical: yes

Bytes per sector: 512

Number of sectors: 250044416

Media size: 119 GiB (128022740992 bytes)

Digest hash information

MD5: 46c4d29a3ba96fffb8d7690949ddea1b

Also note that the MD5 value shown is the value of the data, NOT the image files themselves.
Hashing the image files does will not allow you to verify against the hash of the original media
– the E0* files contain meta data and so do not represent an exact copy of the source media.
If you want to verify the hash of the data after it’s been moved, you need to use a tool like
ewfverify.

139

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

Hashing the data in EWF files requires a tool that recognizes the metadata associated with
an EWF file and can parse and hash the original data. For this we use ewfverify.

root@forensicbox:~# ewfverify case1.disk2.E01

ewfverify 20140806

Verify started at: Jul 08, 2019 15:24:11

This could take a while.

Status: at 83%.

verified 1.6 GiB (1785036800 bytes) of total 1.9 GiB (2128084992 bytes).

completion in 0 second(s) with 507 MiB/s (532021248 bytes/second).

Verify completed at: Jul 08, 2019 15:24:15

Read: 1.9 GiB (2128084992 bytes) in 4 second(s) with 507 MiB/s (532021248 bytes/

↪→ second).

MD5 hash stored in file: 6662cd15f59767e5eb1378b71dc20f68

MD5 hash calculated over data: 6662cd15f59767e5eb1378b71dc20f68

Additional hash values:

SHA1: b4531adb315a48329c9b05361bf66794dd50ca27

ewfverify: SUCCESS

This command simply rehashed the data and compared it to the hash already stored within
the file’s metadata. Every time you move data between volumes, it’s always good practice
to check that the data is still intact. ewfverify allows you to accomplish this integrity check
quickly and efficiently with EWF files.

Now for one last command in the libewf suite of tools. Let’s talk about those situations
where you’ve been provided a set of image files (or file) that were obtained using a popular
Windows forensic tool. There will be times where you would like read the meta-data included
with the images, verify the contents of the images, or export or convert the images to a bit
stream (or raw) format. Once again, the libewf tools come in handy for this. They operate
at the Linux command line, don’t require any other special software, license, or dongle and
are very fast. We will use a copy of an NTFS practical exercise image we will see more
of later in our upcoming advanced exercises. The EWF files we’ll be working on can be
downloaded using wget, as we have done previously. Once downloaded, check the hash and
compare:

root@forensicbox:~# wget http://www.linuxleo.com/Files/NTFS_Pract_2017_E01.tar.gz

...

root@forensicbox:~# sha1sum NTFS_Pract_2017_E01.tar.gz

246c144896c5288369992acc721c95968d2fe9ef NTFS_Pract_2017_E01.tar.gz

140

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

As we’ve seen previously with our software downloads, this file has a tar.gz extension. That
means it is a compressed TAR archive. To review, the tar part of the extension indicates that
the file was created using the tar command (see man tar for more info). The gz extension
indicates that the file was compressed (commonly with gzip). When you first download a tar
archive, particularly from un-trusted sources, you should always have a look at the contents
of the archive before decompressing, extracting and haphazardly writing the contents to your
drive. View the contents of the archive with the following command:

root@forensicbox:~# tar tzvf NTFS_Pract_2017_E01.tar.gz

NTFS_Pract_2017/

NTFS_Pract_2017/NTFS_Pract_2017.E04

NTFS_Pract_2017/NTFS_Pract_2017.E02

NTFS_Pract_2017/NTFS_Pract_2017.E01

NTFS_Pract_2017/NTFS_Pract_2017.E03

The above tar command will list (t) and decompress (z) the file (f)
NTFS_Pract_2017_E01.tar.gz. This allows you to see where the file will be extracted, and as
the output shows, there are five files that will be extracted to a new directory,
NTFS_Pract_2017/, in the current directory. We will use the tar command extensively
throughout this document for downloaded files.

Now we actually untar the images with the tar x option and change into the resulting
directory:

root@forensicbox:~# tar xzvf NTFS_Pract_2017_E01.tar.gz

NTFS_Pract_2017/

NTFS_Pract_2017/NTFS_Pract_2017.E04

NTFS_Pract_2017/NTFS_Pract_2017.E02

NTFS_Pract_2017/NTFS_Pract_2017.E01

NTFS_Pract_2017/NTFS_Pract_2017.E03

root@forensicbox:~# cd NTFS_Pract_2017/

root@forensicbox:NTFS_Pract_2017/ #

The first thing we can do is run the ewfinfo command on the image the first file of the
image set. This will return the meta-data that includes acquisition and media information,
as we’ve seen previously. We learn the version of the software that the images were created
with, along with the collection platform, date of acquisition, name of the examiner that
created the image with the description and notes. Have a look at the output of ewfinfo on
our file set (you only need provide the first file in the set as an argument to the command):

root@forensicbox:NTFS_Pract_2017/# ewfinfo NTFS_Pract_2017.E01

ewfinfo 20140806

141

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

Acquiry information

Case number: 11-1111-2017

Description: Practical Exercise Image

Examiner name: Barry J. Grundy

Evidence number: 11-1111-2017-001

Notes: This image is for artifact recovery.

Acquisition date: Mon May 1 18:19:14 2017

System date: Mon May 1 18:19:14 2017

Operating system used: Linux

Software version used: 20140608

Password: N/A

EWF information

File format: EnCase 6

Sectors per chunk: 64

Error granularity: 64

Compression method: deflate

Compression level: no compression

Set identifier: f9f1b88f-9ac9-e04f-bfe5-195039426d7c

Media information

Media type: fixed disk

Is physical: yes

Bytes per sector: 512

Number of sectors: 1024000

Media size: 500 MiB (524288000 bytes)

Digest hash information

MD5: eb4393cfcc4fca856e0edbf772b2aa7d

Notice that the last line in the output provides us with an MD5 hash of the data in the file
set. Again, don’t confuse this with the hash of the file itself. A file in EWF format stores
the original data from the media that was imaged along with a series of CRC checks and
meta-data. The hash of the E01 file(s) itself will NOT match the hash of the original media
imaged. The hash of the original media and therefore the data collected is recorded in the
metadata of the EWF file for later verification.

You can see from our output below that the NTFS_Pract_2017.E0* file set verifies without
error. The hash obtained during the verification matches that stored within the file:

root@forensicbox:NTFS_Pract_2017/# ewfverify NTFS_Pract_2017.E01

ewfverify 20140806

Verify started at: Jul 08, 2019 16:51:06

This could take a while.

142

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

Verify completed at: Jul 08, 2019 16:51:07

Read: 500 MiB (524288000 bytes) in 1 second(s) with 500 MiB/s (524288000 bytes/

↪→ second).

MD5 hash stored in file: eb4393cfcc4fca856e0edbf772b2aa7d

MD5 hash calculated over data: eb4393cfcc4fca856e0edbf772b2aa7d

ewfverify: SUCCESS

Now we’ll look at ewfexport. This tool allows you to take an EWF file set and convert it to a
bit stream image file, essentially removing the meta-data and leaving us with the data in raw
format, as with dd. It is interesting to note that ewfexport can actually write to standard
output, making it suitable for piping to other commands. Here, we issue the command with
several options that result in the EWF file being exported to a raw image.

root@forensicbox:NTFS_Pract_2017/# ewfexport -t NTFS_Pract_2017 -f raw -u
NTFS_Pract_2017.E01

ewfexport 20140806

Export started at: Jul 08, 2019 16:52:49

This could take a while.

Export completed at: Jul 08, 2019 16:52:51

Written: 500 MiB (524288000 bytes) in 2 second(s) with 250 MiB/s (262144000 bytes/

↪→ second).

MD5 hash calculated over data: eb4393cfcc4fca856e0edbf772b2aa7d

ewfexport: SUCCESS

We use the -t option (“target”) to write to a file. The -f option with raw indicates that the
file format we are writing to is raw, as with dd output. We use -u to accept the remaining
defaults and prevent an interactive session. This results in a single raw file that has the same
hash as the original media (see the output of the md5sum command). We also see an XML
formatted .infofile that contains the hash value. 16

root@forensicbox:NTFS_Pract_2017/# ls -lh NTFS_Pract_2017.raw*
-rw-r--r-- 1 barry users 500M Jul 8 16:59 NTFS_Pract_2017.raw

-rw-r--r-- 1 barry users 158 Jul 8 16:59 NTFS_Pract_2017.raw.info

root@forensicbox:NTFS_Pract_2017/# md5sum NTFS_Pract_2017.raw

eb4393cfcc4fca856e0edbf772b2aa7d NTFS_Pract_2017.raw

16The output of this command might differ greatly depending on the version of libewf you install. Some
repositories might use versions that do not append the .raw extension or provide an .info file.

143

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

At this point, we’ve covered dd, dc3dd, ewfacquire and common methods for checking the
integrity of and exporting the collected images.

All of the tools we’ve covered so far are great for ideal situations, where our media behaves
as we expect. In addition, they all have options or built in mechanisms that would allow our
acquisition to read past (or more accurately “around”) any non-fatal disk errors while syncing
the output so that the resulting image might still be usable. While many practitioners suggest
these options as a default for running dd related commands, I tend to urge against it. Some
of the reasons for this will become more apparent in the following section.

8.7.3 Media Errors - ddrescue

Now that we have a basic understanding of media acquisition and the collection of evidence
images, what do we do if we run into an error? Suppose you are creating a disk image with
dd and the command exits halfway through the process with a read error?

We can instruct dd to attempt to read past the errors using the conv=noerror option. In
basic terms, this is telling the dd command to ignore the errors that it finds, and attempt to
read past them. When we specify the noerror option it is a good idea to include the sync

option along with it. This will “pad” the dd output wherever errors are found and ensure that
the output will be “synchronized” with the original disk. This may allow file system access
and file recovery where errors are not fatal. Assuming that our subject drive is /dev/sdc,
the command will look something like:

root@forensicbox:~# dd if=/dev/sdc of=image.raw conv=noerror,sync

I would like to caution forensic examiners against using the conv=noerror,sync option, how-
ever. While dd is capable of reading past errors in many cases, it is not designed to actually
recover any data from those areas. There are a number of tools out there that are designed
specifically for this purpose. If you need to use conv=noerror,sync, then you are using the
wrong tool. That is not to say it will not work as advertised (with some caveats), only that
there are better options, or at least important considerations.

Which brings us to ddrescue.

Testing has shown that standard dd based tools are simply inadequate for acquiring disks
that have actual errors. This is NOT to say that dd, dc3dd or dcfldd are useless...far from
it. They are just not optimal for error recovery. You may be forced to use dd or
dc3dd because of limits to external tool access or considerations of time. We teach dd in this
guide because there are instances where it may be the only tool available to you. In those
cases, understanding the use of command line options to optimize the recovery of the disk
regardless of errors is important for evidence preservation. However, if there are options,
then perhaps a different tool would make sense.

144

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

This section is not meant to provide an education on disk errors, media failure, or types of
failure. Nor is it meant to imply that any tool is better or worse than any other. I will
simply describe the basic functionality and leave it to the reader to pursue the details.

First, let’s start with some of the issues that arise with the use of common dd based tools.
For the most part, these tools take a “linear” approach to imaging, meaning that they start
at the beginning of the input file and read block by block until the end of the file is reached.
When an error is encountered, the tool will either fail with an “input/output” error, or if a
parameter such as conv=noerror is passed, will ignore the errors and attempt to read through
(or skip) them, continuing to read block by block until it comes across readable data again.
Here is a simple dd command on a disk with errors. The disk is 41943040 sectors:

root@forensicbox:~# blockdev -getsz /dev/sdd

41943040

root@forensicbox:~# dd if=/dev/sdd of=diskimage.raw

dd: error reading ’/dev/sdd’: Input/output error

12840+0 records in

12840+0 records out

6574080 bytes (6.6 MB, 6.3 MiB) copied, 8.48712 s, 775 kB/s

The dd command above was only able to read 12840 sectors (which is 6574080 bytes, as the
dd output shows). The same command, this time using conv=noerror,sync will ignore the
error, pad the error sectors with null bytes, and continue on:

root@forensicbox:~# dd if=/dev/sdd of=diskimage.raw conv=noerror,sync

dd: error reading ’/dev/sdd’: Input/output error

12840+0 records in

12840+0 records out

6574080 bytes (6.6 MB, 6.3 MiB) copied, 7.83969 s, 839 kB/s

dd: error reading ’/dev/sdd’: Input/output error

12840+1 records in

12841+0 records out

6574592 bytes (6.6 MB, 6.3 MiB) copied, 11.6881 s, 563 kB/s

dd: error reading ’/dev/sdd’: Input/output error

12840+2 records in

12842+0 records out

6575104 bytes (6.6 MB, 6.3 MiB) copied, 15.5426 s, 423 kB/s

dd: error reading ’/dev/sdd’: Input/output error

12840+3 records in

12843+0 records out

6575616 bytes (6.6 MB, 6.3 MiB) copied, 19.4103 s, 339 kB/s

dd: error reading ’/dev/sdd’: Input/output error

12840+4 records in

12844+0 records out

6576128 bytes (6.6 MB, 6.3 MiB) copied, 23.2758 s, 283 kB/s

145

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

dd: error reading ’/dev/sdd’: Input/output error

12840+5 records in

12845+0 records out

6576640 bytes (6.6 MB, 6.3 MiB) copied, 27.1286 s, 242 kB/s

dd: error reading ’/dev/sdd’: Input/output error

12840+6 records in

12846+0 records out

6577152 bytes (6.6 MB, 6.3 MiB) copied, 30.9714 s, 212 kB/s

dd: error reading ’/dev/sdd’: Input/output error

12840+7 records in

12847+0 records out

6577664 bytes (6.6 MB, 6.3 MiB) copied, 34.8038 s, 189 kB/s

41943032+8 records in

41943040+0 records out

21474836480 bytes (21 GB, 20 GiB) copied, 1112.08 s, 19.3 MB/s

What you end up with at the end of this command is an image of the entire disk, but with
the error sectors filled in (sync’d) with zeros. This done to maintain correct offsets within
file systems, etc.

Obviously, simple failure (“giving up” when errors are encountered) is not good. Any data
in readable areas beyond the errors will be missed. The problem with ignoring errors and
attempting to read through them (using options like conv=noerror) is that we are further
stressing a disk that is already possibly on the verge of complete failure. The fact of the
matter is that you may get few chances at reading a disk that has recorded “bad sectors”. If
there is an actual physical defect, the simple act of reading the bad areas may make matters
worse, leading to disk failure before other viable areas of the disk are collected. All of this
applies, of course, to disks with “physical” storage. Solid state storage is another matter
entirely.

So, when we pass conv=noerror to an imaging command, we are actually asking our imaging
tools to “grind through” the bad areas. Why not initially skip over the bad sections alto-
gether, since in many cases recovery may be unlikely? Instead we should concentrate on
recovering data from areas of the disk that are good. Once the “good” data is acquired, we
can go back and attempt to collect data from the error areas, preferably with a recovery
algorithm designed with purpose.

In a nutshell, that is the philosophy behind ddrescue. Used properly, ddrescue will read the
“healthy” portions of a disk first, and then fall back to recovery mode – trying to read data
from bad sectors. It does this through the use of some very robust logging,referred to as a
’map file’. This allows ddrescue to resume any imaging job at any point, given a map file to
work from. This is an important (perhaps the most important) point about using ddrescue

- that is, with a map file you never need to re-read already successfully recovered sectors.
When ddrescue references the map file on successive runs, it fills in the gaps, it does not
“redo” work already finished.

146

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

ddrescue is installed by default in Slackware Linux (for full installations), but check with
your distribution of choice to determine availability.

The documentation for ddrescue is excellent. The detailed manual is in an info page. The
command info ddrescue will give you a great start to understanding how this program works,
including examples and the ideas behind the algorithm used. I’ll run through the process
here, but I strongly advise that you read the info page for ddrescue before attempting to use
it on a case.

The first consideration when using any recovery software, is that the disk must be accessible
by the Linux kernel. If the drive does not show up in the /dev structure, then there’s no way
to get tools like ddrescue to work.

Next, we have to have a plan to recover as much data as we can from a bad drive. The
prevailing philosophy of ddrescue is that we should attempt to get all the good data first.
This differs from normal dd based tools, which simply attempt to get all the data at one
time in a linear fashion. ddrescue uses the concept of “splitting the errors”. In other words,
when an area of bad sectors is encountered, the errors are split until the “good” areas are
properly imaged and the unreadable areas marked as bad. Finally, ddrescue attempts to
retry the bad areas by re-reading them until we either get data or fail after a certain number
of specified attempts.

There are a number of ingenious options to ddrescue that allow the user to try and obtain the
most important part of the disk first, then move on until as much of the disk is obtained as
possible. Areas that are imaged successfully need not be read more than once. As mentioned
previously, this is made possible by a robust map file. The map file is written periodically
during the imaging process, so that even in the event of any interruption, the session can be
restarted, keeping duplicate imaging efforts, and therefore disk access, to a minimum.

Given that we are addressing forensic acquisition here, we will concentrate all our efforts on
obtaining the entire disk, even if it means multiple runs. The following examples will be used
to illustrate how the most important options to ddrescue work for the forensic examiner. We
will concentrate on detailing the map file used by ddrescue so that the user can see what is
going on with the tool, and how it operates.

Let’s look at a simple example of using ddrescue on a small drive without errors, to start.
The simplest way to run ddrescue is by providing the input file, output file and a name for
our map file. Note that there is no if= or of=. In order to get a good look at how the
map file works, we’ll interrupt our imaging process halfway through, check the map file to
illustrate how an interruption is handled, and then resume the imaging.

root@forensicbox:~# ddrescue /dev/sdb ddres_image.raw ddres_map.txt

GNU ddrescue 1.24

Press Ctrl-C to interrupt

ipos: 1091 MB, non-trimmed: 0 B, current rate: 4718 kB/s

opos: 1091 MB, non-scraped: 0 B, average rate: 13473 kB/s

147

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

non-tried: 1036 MB, bad-sector: 0 B, error rate: 0 B/s

rescued: 1091 MB, bad areas: 0, run time: 1m 20s

pct rescued: 51.28%, read errors: 0, remaining time: 1m 19s

time since last successful read: n/a

Copying non-tried blocks... Pass 1 (forwards)^C

Interrupted by user

Here we used /dev/sdb as our input file, wrote the image to ddres_image.raw, and wrote the
map file to ddres_map.txt. Note the output shows the progress of the imaging by default,
giving us a running count of the amount of data copied or "rescued", along with a count of
the number of errors encountered (in this case zero), and the imaging speed. The process
was interrupted right at about 50% completion, with the <ctrl-c> key combo.

Now lets have a look at our map file:

root@forensicbox:~# cat ddres_map.txt

Mapfile. Created by GNU ddrescue version 1.24

Command line: ddrescue /dev/sdb ddres_image.raw ddres_map.txt

Start time: 2019-07-09 08:32:18

Current time: 2019-07-09 08:33:38

Copying non-tried blocks... Pass 1 (forwards)

current_pos current_status current_pass

0x410D0000 ? 1

pos size status

0x00000000 0x410D0000 +

0x410D0000 0x3DCB0000 ?

The map file shows us the current status of the acquisition 17. Lines starting with a # are
comments. There are two sections of note. The first non comment line shows the current
status of the imaging while the second section (two lines, in this case) shows the status of
various blocks of data. The values are in hexadecimal, and are used by ddrescue to keep
track of those areas of the target device that have marked errors, those areas that have
already been successfully read and written, and those that remain to be read. The status
symbols we will discuss here (taken from the info page) are as follows:

Character Status
? non-tried
* bad area - non trimmed
/ bad area - non scraped
- bad hardware block(s)
+ finished

In this case we are concerned only with the ? and the +. Essentially, when the copying
17The ddrescue info page has a very detailed explanation of the map file structure.

148

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

process is interrupted, the log is used to tell ddrescue where the copying left off, and what
has already been copied (or otherwise marked). The first section (status) alone may be
sufficient in this case, since ddrescue need only pickup where it left off, but in the case of a
disk with errors, the block section is required so ddrescue can keep track of what areas still
need to be retried as good data is sought among the bad.

Translated, our log would tell us the following (narrowed down to the position and status):

#current position current status

0x410D0000 ?

The status shows that the current imaging process is copying data at byte offset 1091371008

(0x410D0000). In our first pass, this indicates the “non-tried” blocks.

pos size status

0x00000000 0x410D0000 +

0x410D0000 0x3DCB0000 ?

• The data blocks from byte offset 0 (0x00000000) of size 1091371008 bytes (0x410D0000)
are finished.

• The data blocks from offset 1091371008 (0x410D0000) of size 1036713984 bytes (0x3DCB0000)
are still not tried.

The size of our partial image file matches the size of the block of data marked “finished” with
the + symbol in our log file (size bold for emphasis):

root@forensicbox:~# ls -l ddres_image.raw

-rw-r--r-- 1 root root 1091371008 Jul 9 08:33 ddres_image.raw

We can continue and complete the copy operation now by simply invoking the same com-
mand. By specifying the same input and output files, and by providing the map file, we tell
ddrescue to continue where it left off:

root@forensicbox:~# ddrescue /dev/sdb ddresi_image.raw ddres_map.txt

GNU ddrescue 1.24

Press Ctrl-C to interrupt

Initial status (read from mapfile)

rescued: 1091 MB, tried: 0 B, bad-sector: 0 B, bad areas: 0

Current status

ipos: 2128 MB, non-trimmed: 0 B, current rate: 2555 kB/s

opos: 2128 MB, non-scraped: 0 B, average rate: 13640 kB/s

149

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

non-tried: 0 B, bad-sector: 0 B, error rate: 0 B/s

rescued: 2128 MB, bad areas: 0, run time: 1m 15s

pct rescued: 100.00%, read errors: 0, remaining time: n/a

time since last successful read: n/a

Finished

root@forensicbox:~# cat ddres_map.txt

Mapfile. Created by GNU ddrescue version 1.24

Command line: ddrescue /dev/sdb ddres_image.raw ddres_map.txt

Start time: 2019-07-09 12:41:25

Current time: 2019-07-09 12:42:40

Finished

current_pos current_status current_pass

0x7ED70000 + 1

pos size status

0x00000000 0x7ED80000 +

root@forensicbox:~# echo "ibase=16;7ED80000" | bc

2128084992

root@forensicbox:~# ls -l ddres_image.raw

-rw-r--r-- 1 root root 2128084992 Jul 9 12:42 ddres_image.raw

The above session shows the output of the completed ddrescue command followed by the
contents of the map file. The ddrescue command shows the initial status line indicating
where we left off, and then current status through image completion. The echo command
converts our hexadecimal value to decimal, just so we can illustrate that the total rescued is
equal in size to the size of the image.

The real power of the map file lies in the fact that we can start and stop the imaging process
as needed and potentially attack the recovery from different directions (using the -R option
to read the disk in reverse) until you’ve scraped together as much of the original data as
you can. For example, if you had two identical disks, with mirrored data, and both had bad
or failing sectors, you could probably reconstruct a complete image by imaging both with
ddrescue and using the same map file (and output file). Once recovered and recorded as
such in the map file, sectors are not accessed again. This limits the stress to the disk.

Using a disk with known errors we’ll invoke ddrescue with some additional options. In this
case, I may have started imaging a subject disk using a common tool like dd or dc3dd, and
found that the copy failed with errors. Knowing this, I’ll switch to using ddrescue. The
options in the below command are -i0 to indicate starting at offset 0. Offset 0 is the default,
but I’m being explicit here. There are situations where you might want to start at a different
offset and then go back...the map file allows for this easily. The -d option means that we
are going to directly access the disk, bypassing the kernel cache. Next, the -N option is
provided to prevent ddrescue from “trimming” the bad areas that are found. This option
allows ddrescue to start the recovery process by collecting good data first, disturbing the

150

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

error areas as little as possible.

root@forensicbox:~# ddrescue -i0 -d -N /dev/sdd bad_disk.raw bad_log.txt

GNU ddrescue 1.24

Press Ctrl-C to interrupt

ipos: 6619 kB, non-trimmed: 65536 B, current rate: 851 kB/s

opos: 6619 kB, non-scraped: 0 B, average rate: 52634 kB/s

non-tried: 0 B, bad-sector: 0 B, error rate: 0 B/s

rescued: 21474 MB, bad areas: 0, run time: 6m 47s

pct rescued: 99.99\%, read errors: 1, remaining time: n/a

time since last successful read: n/a

Finished [1

root@forensicbox:~# cat bad_log.txt

Mapfile. Created by GNU ddrescue version 1.24

Command line: ddrescue -i0 -d -N /dev/sdd bad_disk.raw bad_log.txt

Start time: 2019-07-09 12:58:21

Current time: 2019-07-09 13:05:08

Finished

current_pos current_status current_pass

0x00660000 + 2

pos size status

0x00000000 0x00640000 +

0x00640000 0x00010000 *
0x00650000 0x4FF9B0000 +

root@forensicbox:~# echo "ibase=16;00010000" | bc

65536

The output above shows a couple of things (highlights for emphasis). We have the completed
initial run with the -N option, and the output shows that we have 65536 bytes “non-trimmed”,
indicating an area of errors. The map file shows the position of un-copied area of the disk
(offset 0x00640000) and a size of 0x00010000 (65536 bytes). The status of this area is indicated
with an asterisk. Note that the 65536 bytes is exactly 128 sectors, and this is the default
“cluster” size used by ddrescue. This does not mean that there are 128 sectors that cannot be
read. It simply means that the entire cluster could not be read, and the -N option prevented
“trimming”, or paring the sectors down to smaller readable chunks. The cluster size can be
controlled with the --cluster-size=X option, where X is the number of sectors in a cluster.
We now have a partial image.

Now we can continue the imaging with the same input and output file, and the same map
file, but this time we remove the -N option, allowing error areas to be trimmed, and we add
the -r option to specify the number of retries when a bad sector is encountered, which is
three in this case.

151

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

root@forensicbox:~# ddrescue -r3 -d /dev/sdd bad_disk.raw bad_log.txt

GNU ddrescue 1.24

Press Ctrl-C to interrupt

Initial status (read from mapfile)

rescued: 21474 MB, tried: 65536 B, bad-sector: 0 B, bad areas: 0

Current status

ipos: 6576 kB, non-trimmed: 0 B, current rate: 0 B/s

opos: 6576 kB, non-scraped: 0 B, average rate: 643 B/s

non-tried: 0 B, bad-sector: 3072 B, error rate: 128 B/s

rescued: 21474 MB, bad areas: 1, run time: 1m 37s

pct rescued: 99.99\%, read errors: 24, remaining time: n/a

time since last successful read: 1m 25s

root@forensicbox:~# cat bad_log.txt

Mapfile. Created by GNU ddrescue version 1.24

Command line: ddrescue -r3 -d /dev/sdd bad_disk.raw bad_log.txt

Start time: 2019-07-09 14:09:06

Current time: 2019-07-09 14:10:43

Finished

current_pos current_status current_pass

0x00645A00 + 3

pos size status

0x00000000 0x00645000 +

0x00645000 0x00000C00 -

0x00645C00 0x4FF9BA400 +

root@forensicbox:~# echo "ibase=16;00000C00" | bc

3072

root@forensicbox:~# echo "3072/512" | bc

6

The output shows that our “non-trimmed” areas are now 0, and the error size is 3072 bytes.
Looking at the map file, we see that there is a section of the disk that is marked with the
“-”, indicating bad hardware blocks, which in this case are unrecoverable. The size in the
map file (0x00000C00) matches the bad-sector in the output (3072). This means we have 6

bad sectors (512 bytes each).

While we were not able to obtain the entire disk in this example, hopefully you recognize the
benefits of the approach we take using ddrescue to get the good data first while recovering
as much as we can before accessing and potentially causing additional damage to bad areas
of the disk.

152

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

8.8 Imaging Over the Wire

There may occasions where you want or need to acquire an image of a computer using a
boot disk and network connectivity. Most often, this approach is used with a Linux boot
disk on the subject machine (the machine you are going to image). Another computer, the
imaging collection platform, is connected either via a network hub or switch; or through
a crossover cable. These sorts of acquisitions can even take place across the country or
anywhere around the world. The reasons and applications of this approach range from level
of physical access to the hardware and interface issues to local resources. As an example,
you might come across a machine that has a drive interface that is incompatible with your
equipment. If there are no external ports (USB for example), then you might need to resort
to the network interface to transfer data. So the drive is left in place, and your collection
platform is attached through a hub, switch, or via crossover cable. Obviously the most secure
path between the subject and collection platform is most desirable. Where possible, I would
use either a crossover cable and a small hub. Consider the security and integrity of your
data if you attempt to transfer evidence across an enterprise or an external network. We
will concentrate on the mechanics here, and the very basic commands required. As always,
I urge you to follow along.

First, lets clarify some terminology for the purpose of our discussion here. In this instance,
the computer we want to image will be referred to as the subject computer. The computer
to which we are writing the image will be referred to as the collection workstation.

In order to accomplish imaging across the network, we will need to setup our collection
workstation to "listen" for data from our subject computer. We do this using netcat, the
nc command. The basic setup looks like this image: Once you have the subject computer

Figure 11: Example network acquisition diagram

booted with a Linux Boot CD (preferably one that is set up with forensics in mind). You’ll

153

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

need to ensure the two computers are configured on the same network, and can communicate.

Checking and configuring network interfaces is accomplished with the ifconfig command
(interface configure). If you run ifconfig -a, you will get a list of interfaces and their current
(if any) settings. On my collection workstation, to shorten the output, I’ll run the command
on the network interface (eth0) directly:

root@forensicbox:~# ifconfig eth0

eth0: flags=4099<UP,BROADCAST,MULTICAST> mtu 1500

ether a4:4c:c8:14:b7:cb txqueuelen 1000 (Ethernet)

RX packets 0 bytes 0 (0.0 B)

RX errors 0 dropped 0 overruns 0 frame 0

TX packets 0 bytes 0 (0.0 B)

TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

device interrupt 16 memory 0xed400000-ed420000

Right now, the output is showing no IPv4 address and the eth0 interface is down. I can
give it a simple address with the ifconfig command again, this time specifying some simple
settings:

root@forensicbox:~# ifconfig eth0 192.168.0.1 netmask 255.255.255.0

root@forensicbox:~# ifconfig eth0

eth0: flags=4099<UP,BROADCAST,MULTICAST> mtu 1500

inet 192.168.0.1 netmask 255.255.255.0 broadcast 192.168.0.255

ether a4:4c:c8:14:b7:cb txqueuelen 1000 (Ethernet)

RX packets 0 bytes 0 (0.0 B)

RX errors 0 dropped 0 overruns 0 frame 0

TX packets 0 bytes 0 (0.0 B)

TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

device interrupt 16 memory 0xed400000-ed420000

Now the output above shows the interface is “up”, and the address is now 192.168.0.1,
and the netmask and broadcast address are also set. For now that’s all for our collection
workstation as far as simple configuration goes.

On our subject workstation, we’ll need to boot it with a suitable boot disk (or bootable USB
thumb drive assuming you have access to a USB port and the ability to boot from it). I carry
several with me, and just about any of them will work as long as they have a robust tool
set. Once you boot the subject system, repeat the steps above to setup a simple network
interface, making sure that the two computers are physically connected via crossover cable,
hub, or some other means. Note the prompt change here to illustrate we are working on the
SUBJECT computer now (hostname is bootdisk), and not our collection system:

root@bootdisk:~# ifconfig eth0 192.168.0.2 netmask 255.255.255.0

154

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

root@bootdisk:~# ifconfig eth0

eth0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500

inet 192.168.0.2 netmask 255.255.255.0 broadcast 192.168.0.255

ether 08:00:27:99:d6:30 txqueuelen 1000 (Ethernet)

RX packets 73 bytes 11716 (11.4 KiB)

RX errors 0 dropped 0 overruns 0 frame 0

TX packets 16 bytes 1392 (1.3 KiB)

TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

Now we have the assigned IP addresses of our systems on a local network:

Subject Computer: 192.168.0.2

Collection Workstation: 192.168.0.1

We can then see if we can communicate with our evidence collection workstation (192.168.0.1
↪→) using the ping command (which we interrupt with ctrl-c)18:

root@bootdisk:~# ping 192.168.0.1

64 bytes from 192.168.0.1: icmp_seq=1 ttl=64 time=39.5 ms

64 bytes from 192.168.0.1: icmp_seq=2 ttl=64 time=3.05 ms

64 bytes from 192.168.0.1: icmp_seq=3 ttl=64 time=282 ms

64 bytes from 192.168.0.1: icmp_seq=4 ttl=64 time=203 ms

64 bytes from 192.168.0.1: icmp_seq=5 ttl=64 time=25.8 ms

64 bytes from 192.168.0.1: icmp_seq=6 ttl=64 time=350 ms

^C

--- 192.168.0.1 ping statistics ---

6 packets transmitted, 6 received, 0% packet loss, time 6009ms

rtt min/avg/max/mdev = 3.049/167.451/349.541/131.698 ms

Now that we have both computers talking, we can being our imaging. Check the hash of the
subject disk:

root@bootdisk:~# sha1sum/dev/sda

0dec26535e6264544488c08a65cefda22ced0f66

8.8.1 Over the wire - dd

The next step is to open a "listening" port on the collection computer. We will do this on
our evidence collection system with nc (our netcat utility), making sure we have a mounted

18if your ping command fails, be sure to check and see if ICMP is disabled via rc.firewall as described
in our workstation configuration section.

155

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

file system to store the image on. In this case we are using an external USB drive mounted
on /mnt/evidence (on the collection workstation) to store our image:

root@forensicbox:~# nc -l -p 2525 | dd of=/mnt/evidence/net_dd.raw

...the command returns nothing until the

collection process starts on the subject computer

This command opens a netcat (nc) listening session (-l) on TCP port 2525 (-p 2525) and
pipes any traffic that comes across that port to the dd command (with only the of= flag),
which writes the file /mnt/evidence/net_dd.raw.

Now on the subject computer (note the command prompt with the hostname bootdisk), we
issue the dd command. Instead of giving the command an output file parameter using of=,
we pipe the dd command output to netcat (nc) and send it to our listening port (2525) on
the collection computer at IP address 192.166.0.1.

root@bootdisk~# dd if=/dev/sda | nc 192.168.0.1 2525

...again the command returns nothing

This command pipes the output of dd straight to nc, directing the image over the network
to TCP port 2525 on the host 192.168.0.1 (our collection box’s IP address). If you want to
use dd options like conv=noerror,sync or bs=x, then you do that on the dd side of the pipe.

Once the imaging is complete19, we will see that the commands at both ends appear to
“hang”. After we receive our completion output from dd on the subject computer (records in
/ records out), we can kill the nc listening on our collection box with a simple <ctrl-c>.

root@bootdisk:~#

41943040+0 records in

41943040+0 records out

21474836480 bytes (21 GB, 20 GiB) copied, 3081.68 s, 7.0 MB/s

When you see this on the subject computer, you would use <ctrl-c>.

root@forensicbox:~# nc -l -p 2525 | dd of=/mnt/evidence/net_dd.raw

^C <- We’ve used <ctrl-c> to finish the process

34410182+9694042 records in

41943040+0 records out

21474836480 bytes (21 GB, 20 GiB) copied, 24497 s, 877 kB/s

19You can add the status option to dd on the subject side if you want to watch the progress.

156

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

This should return our prompts on both sides of the connections. You should then check the
resulting image on the collection workstation to see if they match.

root@forensicbox:~# sha1sum /mnt/evidence/net_dd.raw

0dec26535e6264544488c08a65cefda22ced0f66 /mnt/evidence/net_dd.raw

Our hashes match and our network acquisition was successful.

8.8.2 Over the Wire - dc3dd

As we discussed previously, there are a number of tools we can use for imaging that provide
a more forensic oriented approach. dc3dd is as good a choice for over the wire imaging as it is
on local disks. You also have some flexibility with dc3dd in that even if your boot disk does
not come with it installed, you are still able to use all its features on the evidence collection
computer.

dc3dd does all its magic on the output side of the acquisition process (unless you are acquiring
from file sets or some other non-standard source). This means we can use plain dd on our
subject computer (using the boot disk) to acquire the disk and stream the contents across
our netcat pipe, and still allow dc3dd on our collection machine to handle hashing, splitting
and logging. Most of dc3dd’s options and parameters work on the output stream. So, while
our listening process on the collection system will use dc3dd commands, the subject system
can use the same dd commands we used before.

On the collection system, let’s set up a listening process that uses dc3dd to split the incoming
data stream into 2GB chunks and logs the output to nc.dc3dd.raw. As soon as we initiate
our command, dc3dd will start and sit waiting for input from the listening port (2525):

root@forensicbox:~# nc -l -p 2525 | dc3dd ofs=/mnt/evidence/net_dc3dd.000 ofsz=4G
log=/mnt/evidence/net_dc3dd.log

dc3dd 7.2.646 started at 2019-07-13 17:06:22 -0400

compiled options:

command line: dc3dd ofs=/mnt/evidence/net_dc3dd.000 ofsz=4G log=/mnt/evidence/

↪→ net_dc3dd.log

sector size: 512 bytes (assumed)

1324389536 bytes (1.2 G) copied (??%), 207 s, 6.1 M/s

...imaging continues

The dc3dd output will start immediately, but stay at 0 bytes until it receives input through
the pipe. As soon as you start the imaging process on the subject machine, you’ll see the
dc3dd command on the listening machine start to process the incoming data. Again notice
we are using plain dd on the subject box to simply stream bytes over the pipe. dc3dd takes
over on the collection machine to implement our dc3dd options and logging.

157

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

root@bootdisk:~# dd if=/dev/sda | nc 192.168.0.1 2525

41943040+0 records in

41943040+0 records out

21474836480 bytes (21.4 GB, 20 GiB) copied, 2960.16 s, 6.9 MB/s)

When the transfer is complete, you will see the completion messages from dd (number of
input and output records).

We can look at the resulting files and the dc3dd log on our collection machine.

root@forensicbox:~# ls -lh /mnt/evidence/net_dc3dd.*
-rw-r--r-- 1 root root 4.0G Jul 13 17:16 /mnt/evidence/net_dc3dd.000

-rw-r--r-- 1 root root 4.0G Jul 13 17:28 /mnt/evidence/net_dc3dd.001

-rw-r--r-- 1 root root 4.0G Jul 13 17:36 /mnt/evidence/net_dc3dd.002

-rw-r--r-- 1 root root 4.0G Jul 13 17:45 /mnt/evidence/net_dc3dd.003

-rw-r--r-- 1 root root 4.0G Jul 13 17:55 /mnt/evidence/net_dc3dd.004

-rw-r--r-- 1 root root 438 Jul 13 17:57 /mnt/evidence/net_dc3dd.log

root@forensicbox:~# cat /mnt/evidence/net_dc3dd.log

dc3dd 7.2.646 started at 2019-07-13 17:06:22 -0400

compiled options:

command line: dc3dd ofs=/mnt/evidence/net_dc3dd.000 ofsz=4G log=/mnt/evidence/

↪→ net_dc3dd.log

sector size: 512 bytes (assumed)

21474836480 bytes (20 G) copied (??%), 3045.31 s, 6.7 M/s

input results for file ‘stdin’:

41943040 sectors in

output results for files ‘/mnt/evidence/net_dc3dd.000’:

41943040 sectors out

dc3dd aborted at 2019-07-13 17:57:07 -0400

We can see that the dc3dd log ended with an “aborted” message because we had to manually
stop the listening process (with ctrl-c) since in this case dc3dd is not handling the input
itself, but just accepting the stream through netcat – you need to manually tell it when the
stream is complete. Again, when completed, you should check the resulting hashes against
our original hash of /dev/sda on the subject machine.

root@forensicbox:~# cat /mnt/evidence/net_dc3dd.00*| sha1sum

0dec26535e6264544488c08a65cefda22ced0f66 -

158

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

8.8.3 Over the Wire - ewfacquirestream

Last, but not least, we will cover a tool that will allow us to take a stream of input (with
the same netcat pipe) and create an EWF file from it. ewfacquirestream acts much like
ewfacquire (and is part of the same libewf package we installed previously), but allows for
data to be gathered via standard input. The most obvious use for this is taking data passed
by our netcat pipe.

In previous examples, once the data reached the destination collection computer, the listening
netcat process piped the output to the dd or dc3dd command output string, and the file was
written exactly as it came across, as a bitstream image.

But by using ewfacquirestream, we can create EWF files instead of a bitstream image. We
simply pipe the output stream from netcat to ewfacquirestream. If we do not wish to have
the program use default values, then we issue the command with options that define how we
want the image made (sectors, hash algorithms, error handling, etc.) and what information
we want stored. The command on the subject machine remains the same. The command
on the collection system would look something like this (utilizing many of the command
defaults):

root@forensicbox:~# nc -l -p 2524 | ewfacquirestream -c 2019-001 -D"Subject Disk"
-e "BGrundy" -E ’1’ -f encase6 -m fixed -M physical-N "Imaged via network
connection" -t /mnt/evidence/net_ewfstream

ewfacquirestream 20140806

Unsupported compression values defaulting to method: deflate with level: none.

Using the following acquiry parameters:

Image path and filename: /mnt/evidence/net_ewfstream.E01

Case number: case_number

Description: Subject Disk

Evidence number: 1

Examiner name: BGrundy

Notes: Imaged via network connection

Media type: fixed disk

Is physical: yes

EWF file format: EnCase 6 (.E01)

Compression method: deflate

Compression level: none

Acquiry start offset: 0

Number of bytes to acquire: 0 (until end of input)

Evidence segment file size: 1.4 GiB (1572864000 bytes)

Bytes per sector: 512

Block size: 64 sectors

Error granularity: 64 sectors

Retries on read error: 2

Zero sectors on read error: no

159

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

Acquiry started at: Jul 13, 2019 21:44:46

This could take a while.

...output pauses until the acquisition is started on the subject computer.

This command takes the output from netcat (nc) and pipes it to ewfacquirestream.

• the case number is specified with -C

• the evidence description is given with -D

• the examiner given with -e

• evidence number with -E

• encase6 format is specified with -f encase6

• the media type is given with -m

• the media flags are given with -M

• notes are provided with -N

• the target path and file name is specified with -t /path/file.

No extension is given, and ewfacquirestream automatically appends an E0* extension to the
resulting file. To get a complete list of options, look at the man pages, or run the command
with the -h option.

Back on the subject system we use our standard “send the data across the wire from a subject
computer” command. . .

root@bootdisk:~# dd if=/dev/sda | nc 192.168.0.1 2525

Once the acquisition completes (you’ll need to stop the ewfacquirestream process on the
collection system when the dd command completes on the subject system - again you will
know when you see the dd input/output message on the subject side), you can look at the
resulting files, and compare the hashes. Since we used sha1sum previously, we’ll re-run with
md5sum so we can compare the hash against the ewfverify output (which uses MD5):

root@bootdisk:~# md5sum /dev/sda

e663f5fd97a73a8b37a942a58dde5496 /dev/sda

160

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

root@forensicbox:~# ls -lh /mnt/evidence/net_ewfstream.*
-rw-r--r-- 1 root root 1.5G Jul 14 09:52 /mnt/evidence/net_ewfstream.E01

-rw-r--r-- 1 root root 1.5G Jul 14 09:52 /mnt/evidence/net_ewfstream.E02

-rw-r--r-- 1 root root 1.5G Jul 14 09:52 /mnt/evidence/net_ewfstream.E03

-rw-r--r-- 1 root root 1.5G Jul 14 09:52 /mnt/evidence/net_ewfstream.E04

-rw-r--r-- 1 root root 1.5G Jul 14 09:52 /mnt/evidence/net_ewfstream.E05

-rw-r--r-- 1 root root 1.5G Jul 14 09:52 /mnt/evidence/net_ewfstream.E06

-rw-r--r-- 1 root root 1.5G Jul 14 09:52 /mnt/evidence/net_ewfstream.E07

-rw-r--r-- 1 root root 1.5G Jul 14 09:52 /mnt/evidence/net_ewfstream.E08

-rw-r--r-- 1 root root 1.5G Jul 14 09:52 /mnt/evidence/net_ewfstream.E09

-rw-r--r-- 1 root root 1.5G Jul 14 09:52 /mnt/evidence/net_ewfstream.E10

-rw-r--r-- 1 root root 1.5G Jul 14 09:52 /mnt/evidence/net_ewfstream.E11

-rw-r--r-- 1 root root 1.5G Jul 14 09:52 /mnt/evidence/net_ewfstream.E12

-rw-r--r-- 1 root root 1.5G Jul 14 09:52 /mnt/evidence/net_ewfstream.E13

-rw-r--r-- 1 root root 988M Jul 14 09:52 /mnt/evidence/net_ewfstream.E14

root@forensicbox:~# ewfverify net_ewfstream.E01

ewfverify 20140806

Verify started at: Jul 14, 2019 09:56:03

This could take a while.

Status: at 6%.

verified 1.2 GiB (1370980352 bytes) of total 20 GiB (21474836480 bytes).

completion in 1 minute(s) and 2 second(s) with 310 MiB/s (325376310 bytes/

↪→ second).

...

Status: at 99%.

verified 19 GiB (21454585856 bytes) of total 20 GiB (21474836480 bytes).

completion in 0 second(s) with 341 MiB/s (357913941 bytes/second).

Verify completed at: Jul 14, 2019 09:57:03

Read: 20 GiB (21474836480 bytes) in 1 minute(s) and 0 second(s) with 341 MiB/s

↪→ (357913941 bytes/second).

MD5 hash stored in file: e663f5fd97a73a8b37a942a58dde5496

MD5 hash calculated over data: e663f5fd97a73a8b37a942a58dde5496

ewfverify: SUCCESS

...compare the md5sum output from /dev/sda on the subject computer and the end of the
ewfverify output and we see our verification is successful.

161

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

8.9 Compression - Local and Over the Wire

Here we have covered the very basics and mechanics of imaging media over a network pipe.
netcat is not your only solution to this, though it is one of the simpler options and is usually
available on most boot disks and Linux systems.

In reality, you might want to consider whether you want your data encrypted as it traverses
the network. In our example above, we may have been connected via a crossover cable
(interface to interface) or through a standalone network hub. But what if you are in a
situation where the only means of collection is remote? Or over enterprise network hardware?
In that case you would perhaps want encryption. For that you could use cryptcat, or even
ssh. Now that you understand the basic mechanics of this technique, you are urged to explore
other tools and methods. There are projects our there like rdd (https://sourceforge.net/
projects/rdd/) and air (https://sourceforge.net/projects/air-imager/) you might
want to explore and test on your own.

8.9.1 Compression on the Fly with dd

Another useful technique while imaging is compression. Considering our concern for forensic
application here, we will be sure to manage our compression technique so that we can verify
our hashes without having to decompress and write our images out before checking them.

For this exercise, we’ll use the GNU gzip utility. gzip is a command line utility that allows
us some fairly granular control over the compression process. There are other compression
utilities (lzip, xz, etc.), but we’ll concentrate on gzip for the same reasons we learned dd

and vi...almost always available, and fine starting place to learn the foundations of command
line concepts. Most source packages for software is minimally available in a gz compressed
format, but I urge you to explore other compression options on your own.

First, for the sake of familiarity, let’s look at the simple use of gzip on a single file and
explore some of the options at our disposal. I have created a directory called testcomp and
I’ve copied the image file NTFS_Pract_2017.raw (from our ewfexport exercise in the section
on libewf) into that directory to practice on. Copying the image file into an empty directory
gives me an uncluttered place to experiment. You can use any file you want to practice this
particular section on. First, let’s double check the hash of the image:

root@forensicbox:~# mkdir testcomp

root@forensicbox:~# cp NTFS_Pract_2017.raw testcomp/.

root@forensicbox:~# cd testcomp

root@forensicbox:testcomp# ls -lh

total 501M

162

https://sourceforge.net/projects/rdd/
https://sourceforge.net/projects/rdd/
https://sourceforge.net/projects/air-imager/

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

-rw-r--r-- 1 root root 500M Jul 14 10:54 NTFS_Pract_2017.raw

root@forensicbox:testcomp# sha1sum NTFS_Pract_2017.raw

094123df4792b18a1f0f64f1e2fc609028695f85 NTFS_Pract_2017.raw

Now, in its most simple form, we can call gzip and simply provide the name of the file we
want compressed. This will replace the original file with a compressed file that has a .gz

suffix appended.

root@forensicbox:testcomp# gzip NTFS_Pract_2017.raw

root@forensicbox:testcomp# ls -lh

total 61M

-rw-r--r-- 1 root root 61M Jul 14 10:54 NTFS_Pract_2017.raw.gz

So now we see that we have replaced our original 500M file with a 61M file that has a .gz

extension. To decompress the resulting .gz file:

root@forensicbox:testcomp# gzip -d NTFS_Pract_2017.raw.gz

root@forensicbox:testcomp# ls -lh

total 501M

-rw-r--r-- 1 root root 500M Jul 14 10:54 NTFS_Pract_2017.raw

root@forensicbox:testcomp# sha1sum NTFS_Pract_2017.raw

094123df4792b18a1f0f64f1e2fc609028695f85 NTFS_Pract_2017.raw

We’ve decompressed the file and replaced the .gz file with the original image. A check of
the hash shows that all is in order.

Suppose we would like to compress a file but leave the original intact. We can use the gzip

command with the -c option. This writes to standard output instead of a replacement file.
When using this option we need to redirect the output to a filename of our choosing so that
the compressed file is not simply streamed to our terminal. Here is a sample session using
this technique:

root@forensicbox:testcomp# ls -lh

total 501M

-rw-r--r-- 1 root root 500M Jul 14 10:54 NTFS_Pract_2017.raw

root@forensicbox:testcomp# gzip -c NTFS_Pract_2017.raw > NewImage.raw.gz

root@forensicbox:testcomp# ls -lh

total 561M

-rw-r--r-- 1 root root 500M Jul 14 10:54 NTFS_Pract_2017.raw

-rw-r--r-- 1 root root 61M Jul 14 11:51 NewImage.raw.gz

163

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

root@forensicbox:testcomp# gzip -cd NewImage.raw.gz > NewUncompressed.raw

root@forensicbox:testcomp# ls -lh

total 1.1G

-rw-r--r-- 1 root root 500M Jul 14 10:54 NTFS_Pract_2017.raw

-rw-r--r-- 1 root root 61M Jul 14 11:51 NewImage.raw.gz

-rw-r--r-- 1 root root 500M Jul 14 11:52 NewUncompressed.raw

root@forensicbox:testcomp# sha1sum NewUncompressed.raw

094123df4792b18a1f0f64f1e2fc609028695f85 NewUncompressed.raw

In the above output, we see that the first directory listing shows the single image file. We
then compress using gzip -c which writes to standard output. We redirect that output to
a new file (name of our choice). The second listing shows that the original file remains, and
the compressed file is created. We then use gzip -cd to decompress the file, redirecting the
output to a new file and this time preserving the compressed file.

These are very basic options for the use of gzip. The reason we learn the -c option is to
allow us to decompress a file and pipe the output to a hash algorithm. In a more practical
sense, this allows us to create a compressed image and check the hash of that image without
writing the file twice.

If we go back to a single image file in our directory, we can see this in action. Remove all the
files we just created (using the rm command) and leave the single original dd image. Now we
will create a single compressed file from that original image and then check the hash of the
compressed file to ensure it’s validity:

root@forensicbox:testcomp# rm -f NewImage.raw.gz NewUncompressed.raw

root@forensicbox:testcomp# ls -lh

total 501M

-rw-r--r-- 1 root root 500M Jul 14 10:54 NTFS_Pract_2017.raw

root@forensicbox:testcomp# gzip NTFS_Pract_2017.raw

root@forensicbox:testcomp# ls -lh

total 61M

-rw-r--r-- 1 root root 61M Jul 14 10:54 NTFS_Pract_2017.raw.gz

root@forensicbox:testcomp# gzip -cd NTFS_Pract_2017.raw.gz | sha1sum

094123df4792b18a1f0f64f1e2fc609028695f85 -

root@forensicbox:testcomp# ls -lh

total 61M

-rw-r--r-- 1 root root 61M Jul 14 10:54 NTFS_Pract_2017.raw.gz

164

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

First we see that we have the correct hash. Then we compress the image with a simple gzip

command that replaces the original file. Now, all we want to do next is check the hash of our
compressed image without having to write out a new image. We do this by using gzip -c

(to standard out) -d (decompress), passing the name of our compressed file but piping the
output to our hash algorithm (in this case sha1sum). The result shows the correct hash of
the output stream, where the output stream is signified by the -.

Okay, so now that we have a basic grasp of using gzip to compress, decompress, and verify
hashes, let’s put it to work “on the fly” using dd to create a compressed image. We will then
check the compressed image’s hash value against an original hash.

Find a small thumb drive or other removable media to image. I’ll be using a small 16GB
USB stick. Clear out the testcomp directory - or create a new directory - so that we have a
clean place to write our image to (or where ever you have the space to write).

Obtaining a compressed dd image on the fly is simply a matter of streaming our dd output
through a pipe to the gzip command and redirecting that output to a file. Our resulting
image’s hash can then be checked using the same method we used above. Consider the
following session. The physical device we have as an example in this case is /dev/sdi (if you
are using a device to follow along, remember to use lsscsi or lsblk to find the correct device
file).

root@forensicbox:~# lsblk

NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT

...

sdc 8:32 1 15G 0 disk

sdc1 8:33 1 15G 0 part

root@forensicbox:~# sha1sum /dev/sdc

b8a8a99b3f9bf1ffbf942eeb0729e34e5ae7f36f /dev/sdc

root@forensicbox:~# dd if=/dev/sdc | gzip -c > sdc_img.raw.gz

31326208+0 records in

31326208+0 records out

16039018496 bytes (16 GB, 15 GiB) copied, 1512.94 s, 10.6 MB/s

root@forensicbox:~# ls -lh

total 6.8G

-rw-r--r-- 1 root root 6.8G Jul 14 17:40 sdc_img.raw.gz

root@forensicbox:~# gzip -cd sdc_img.raw.gz | sha1sum

b8a8a99b3f9bf1ffbf942eeb0729e34e5ae7f36f -

In the above dd command there is no “output file” specified, just as when we piped the output
to netcat in our “over the wire” section. The output is simply piped straight to gzip for
redirection into a new file. We then follow up with our integrity check by decompressing the

165

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

file to standard output and hashing the stream. The hashes match, so we can see that we
used dd to acquire a compressed image (6.8G compressed image vs. the 16G device), and
verified our acquisition without the need to decompress (and write to disk) first.

Now let’s go one step further in our on the fly compression demonstration. How about
putting a few of these steps altogether? Recall our imaging over the network through
netcat. If you look at the different sizes of our compressed vs. un-compressed images, you’ll
see there’s quite a difference in size (which will, of course, depend on the compress-ability
of the data on the volume being imaged). Do you think it might be faster to compress data
before sending over the network? Let’s find out.

Going back to our simple network setup, let’s do the same imaging, but this time we’ll
pipe to gzip -c on one side of the network and gzip -cd on the other, effectively sending
compressed data across the wire. The resulting image is NOT compressed. We decompress
it before it reaches the imaging tool. You can elect to leave that out if you like and simply
write a compressed image.

We’ll start by hashing the subject hard drive again from our boot disk. Assuming the
network settings are all correct, and then opening our netcat listener and dc3dd process on
the collection box:

root@bootdisk~# sha1sum/dev/sda

0dec26535e6264544488c08a65cefda22ced0f66 /dev/sda

Open the listening process, redirecting the output to a file. I’m using dc3dd with hof= to
collect input and output hash to compare with the SHA1 hash above.

root@forensicbox:~# nc -l -p 2525 | gzip -cd | dc3dd hash=sha1 hof=netCompress.raw
log=netCompress.log

dc3dd 7.2.646 started at 2019-07-15 10:07:56 -0400

compiled options:

command line: dc3dd hash=sha1 hof=netCompress.raw log=netCompress.log

sector size: 512 bytes (assumed)

0 bytes (0 G) copied (??%), 7 s, 0 K/s

When you hit enter, you can see dc3dd is waiting for input from the pipe.

And now start the imaging on the subject computer:

root@bootdisk:~# dd if=/dev/sda | gzip -c | nc 192.168.0.1 2525

41943040+0 records in

41943040+0 records out

21474836480 bytes (21 GB, 20 GiB) copied, 12564.8 s, 1.7 MB/s

^C

166

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

When the imaging is complete, we can check the resulting dc3dd log, netCompress.log, to
verify the integrity of the resulting image:

root@forensicbox:~# ls -lh netCompress.raw

-rw-r--r-- 1 root root 20G Jul 15 13:39 netCompress.raw

root@forensicbox:~# cat netCompress.log

dc3dd 7.2.646 started at 2019-07-15 10:07:56 -0400

compiled options:

command line: dc3dd hash=sha1 hof=netCompress.raw log=netCompress.log

sector size: 512 bytes (assumed)

21474836480 bytes (20 G) copied (??%), 12716 s, 1.6 M/s

21474836480 bytes (20 G) hashed (100%), 35.9389 s, 570 M/s

input results for file ‘stdin’:

41943040 sectors in

0dec26535e6264544488c08a65cefda22ced0f66 (sha1)

output results for file ‘netCompress.raw’:

41943040 sectors out

[ok] 0dec26535e6264544488c08a65cefda22ced0f66 (sha1)

dc3dd completed at 2019-07-15 13:39:52 -0400

A couple of things to notice here. First, our hashes match. We successfully read a device,
compressed the data, piped it over a network, decompressed the data and wrote an image
file. The reason we do this is to save some time. You can test this yourself, imaging over a
network and timing the entire process with and without compression.

Keep in mind that the usefulness of this is dependent on where your particular bottlenecks
are. On a local network, via crossover cable, and writing to a USB drive, compressing across
the network may have little impact. But if you are imaging over an enterprise network, or
remotely, you may see quite a performance gain from compression. Your results may vary,
but be aware of the technique.

8.10 Preparing a disk for the Suspect Image - Wiping

One common practice in forensic disk analysis is to sanitize or "wipe" a disk prior to restoring
or copying a forensic image to it. This ensures that any data found on the wiped disk is
from the image and not from “residual” data. That is, data left behind from a previous case
or image. In technical terms, residual data should never be an issue unless your operating
system or forensic software is drastically broken. Though there has been some concern over
whether an examiner accidentally physically searches a device rather than an image file on

167

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

the device. In legal terms it’s an important step to ensure compliance with best practices
that have been around for a long while.

We’ve already covered simple acquisitions, and media sanitization is a step that is normally
performed before you conduct evidence collection. It is being introduced here because it
makes more sense to cover the subject of imaging when introducing imaging tools rather
than introducing drive wiping before we’ve covered the tools we’ll use.

On to wiping. We can use a special device, /dev/zero as a source of zeros. This can be used
to create empty files and wipe portions of disks. You can write zeros to an entire disk (or
at least to those areas accessible to the kernel and user space) using the following command
(assuming /dev/sdb is the disk you want to wipe - in this case a small 2G thumb drive):

root@forensicbox:~# dd if=/dev/zero of=/dev/sdb bs=4k

dd: error writing ’/dev/sdb’: No space left on device

519553+0 records in

519552+0 records out

2128084992 bytes (2.1 GB, 2.0 GiB) copied, 1682.24 s, 1.3 MB/s

This starts at the beginning of the drive (/dev/sdb) and writes zeros (the input file) to every
sector on /dev/sdb (the output file) in 4 kilobyte chunks (bs =<block size>). Specifying
larger block sizes can speed the writing process (default is 512 bytes). Experiment with
different block sizes and see what effect it has on the writing speed (i.e. 32k, 64k, etc.). Be
careful of missing partial blocks at the end of the output if your block size is not a proper
multiple of the device size. The error No space left on device indicates that the device has
been filled with zeros. And, of course, be very sure that the target disk is in fact the disk
you intend to wipe. Check and double check.

dc3dd makes the wiping process even easier and provides options to wipe with specific pat-
terns. In it’s simplest form, dc3dd can wipe a disk with a simple:

root@forensicbox:~# dc3dd wipe=/dev/sdb

dc3dd 7.2.646 started at 2019-07-15 15:21:10 -0400

compiled options:

command line: dc3dd wipe=/dev/sdb

device size: 4156416 sectors (probed), 2,128,084,992 bytes

sector size: 512 bytes (probed)

28084992 bytes (2 G) copied (100%), 1 s, 3.3 G/s

2128084992 bytes (2 G) copied (100%), 318 s, 6.4 M/s

input results for pattern ‘00’:

4156416 sectors in

output results for device ‘/dev/sdb’:

4156416 sectors out

168

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

dc3dd completed at 2019-07-15 15:26:27 -0400

So how do we verify that our command to write zeros to a whole disk was a success? You
could check random sectors with a hex editor, but that’s not realistic for a large drive. One
of the best methods would be to use the xxd command (command line hexdump) with the
"autoskip" option. The output of this command on a zero’d drive would give just three lines.
The first line, starting at offset zero with a row of zeros in the data area, followed by an
asterisk (*) to indicate identical lines, and finally the last line, with the final offset followed
by the remaining zeros in the data area. Here’s an example of the command on a zero’d
drive and its output.

root@forensicbox:~# xxd -a /dev/sdb

00000000: 0000 0000 0000 0000 0000 0000 0000 0000

*
7ed7fff0: 0000 0000 0000 0000 0000 0000 0000 0000

Using dc3dd with the hwipe option (hash the wipe), the confirmation would look like this
(and is far quicker than the dd/xdd combination):

root@forensicbox:~# dc3dd hwipe=/dev/sdb hash=sha1

dc3dd hwipe=/dev/sdb hash=sha1

dc3dd 7.2.646 started at 2019-07-15 15:28:13 -0400

compiled options:

command line: dc3dd hwipe=/dev/sdb hash=sha1

device size: 4156416 sectors (probed), 2,128,084,992 bytes

sector size: 512 bytes (probed)

2128084992 bytes (2 G) copied (100%), 471 s, 4.3 M/s

2128084992 bytes (2 G) hashed (100%), 151 s, 13 M/s

input results for pattern ‘00’:

4156416 sectors in

4c9b7786abd51a554b35193dd1805476859903f4 (sha1)

output results for device ‘/dev/sdb’:

4156416 sectors out

[ok] 4c9b7786abd51a554b35193dd1805476859903f4 (sha1)

dc3dd completed at 2019-07-15 15:36:04 -0400

169

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

8.11 Final Words on Imaging

Anyone who has worked in the field of digital forensics for any length of time can tell you
that the acquisition process is the foundation of our business. Everything else we do can
be cross verified and validated after the fact. But you often only get one shot at a proper
acquisition. You may have a limited amount of time on site, or one shot at recovering data
from a failing drive. Make sure you understand how the tools work, and what the options
actually do. Validating your approach prior to using it in live field work is essential.

This section has introduced a number of basic tools and a rough technical process. Require-
ments and procedures vary from jurisdiction to jurisdiction and across organizations. Know
the requirements of your particular governing body, and adhere to them.

Technological advances will change much of how we do acquisitions. Solid state media and
storage technologies are more than just changes to the interface that may require an adapter.
The way data is physically being stored and data blocks manipulated is constantly evolving.
The entire approach to "obtaining an exact duplicate" is changing as storage methods and
technologies advance. Don’t get too comfortable!

8.12 Mounting Evidence

We’ve already discussed the mount command and using it to access file systems on external
devices. Now that we are working with forensic images, we’ll need to access those as well.
There are two ways we do this: through forensic software "physically"; or through volume
mounting "logically".

When we access the image with forensic software, we are accessing the entire physical image
including unallocated blocks and otherwise inaccessible file system and volume management
artifacts that were successfully recovered and copied by our imaging software (or hardware).
We’ll cover some forensic software in later sections.

For now we are going to look at some tools and techniques we can use to view the contents
of an image as a logically mounted file system.

8.12.1 Structure of the Image

The first step in all this is to determine what volumes and file systems are available for logical
mounting within our image. “Structure”, in this case, refers to the partitioning scheme and
identification of volumes and file systems within the image.

Given that our images have been of physical disks, they should all likely have some sort of
partition table in them. We can detect this partition table using fdisk or gdisk. We will

170

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

cover more “forensically” oriented software for this later (mmls from the Sleuth Kit), but for
now, fdisk and gdisk should be available on any modern Linux system.

We will cover fdisk first, as it was previously discussed, earlier using the -l option. We can
get the partition information on /dev/sda, for example, with:

root@forensicbox:~# fdisk -l /dev/sda

Disk /dev/sda 20 GiB, 21474836480 bytes, 41943040 sectors

Units: sectors of 1 * 512 = 512 bytes

Sector size (logical/physical): 512 bytes / 512 bytes

I/O size (minimum/optimal): 512 bytes / 512 bytes

Disklabel type: gpt

Disk identifier: 6139EC4A-2EB3-4AF1-9A09-FE44CDEF22A3

Device Start End Sectors Size Type

/dev/sda1 34 131105 131072 64M Linux filesystem

/dev/sda2 131106 8519713 8388608 4G Linux swap

/dev/sda3 8519714 33685537 25165824 12G Linux filesystem

/dev/sda4 33685538 41943006 8257469 4G Microsoft basic data

So the output of fdisk shows that the partition label is of type GPT. What if we run the
gdisk command on the same disk? Here’s the output:

root@forensicbox:~# gdisk -l /dev/sda

GPT fdisk (gdisk) version 1.0.5

Partition table scan:

MBR: protective

BSD: not present

APM: not present

GPT: present

Found valid GPT with protective MBR; using GPT.

Disk /dev/sda: 41943040 sectors, 20.0 GiB

Sector size (logical/physical): 512/512 bytes

Disk identifier (GUID): 6139EC4A-2EB3-4AF1-9A09-FE44CDEF22A3

Partition table holds up to 128 entries

Main partition table begins at sector 2 and ends at sector 33

First usable sector is 34, last usable sector is 41943006

Partitions will be aligned on 2-sector boundaries

Total free space is 0 sectors (0 bytes)

Number Start (sector) End (sector) Size Code Name

1 34 131105 64.0 MiB 8300 Linux filesystem

2 131106 8519713 4.0 GiB 8200 Linux swap

3 8519714 33685537 12.0 GiB 8300 Linux filesystem

171

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

4 33685538 41943006 3.9 GiB 0700 Microsoft basic data

The important takeaway here is that the output of the two is functionally the same. When
recording the output of these commands for a forensic examination, however, I would urge
you to utilize the tool specifically designed for the system you are currently dealing with.
Use fdisk for DOS partition schemes, and gdisk for GPT partition schemes when recording
your output. Our output above shows that /dev/sda has four partitions. Partitions 1 and
3 are of type “Linux”, and partition two is identified as a Linux swap partition (roughly
virtual memory or “swap file” for the Linux OS). The last partition is "Microsoft basic
data", normally the code for a volume containing an NTFS file system.

It is especially important to note that the file system code and name do not necessarily
identify the actual file system on that volume. In our example above, the file systems could
be ext2, ext3, ext4, reiserfs, etc.

Recording the output for an examination is a simple matter of redirecting the output of
either command (fdisk or gdisk) to a file. Using gdisk as an example (assuming a GPT
layout):

root@forensicbox:~# gdisk -l /dev/sda > /mnt/evidence/sda.gdisk.txt

A couple of things to note here: The name of the output file (sda.gdisk.txt) is completely
arbitrary. There are no rules for extensions. Name the file anything you want. I would
suggest you stick to a convention and make it descriptive. Also note that since we identified
an explicit path for the file name, sda.gdisk.txt will be created in /mnt/evidence. Had we
not given the path, the file would be created in the current directory (/root, as indicated
by the tilde character in the command propmt [shorthand for the currently logged in user’s
home directory]).

Once you have determined the partition layout of the disk, it’s time to see if we can identify
the file system and mount the volumes to review the contents.

8.12.2 Identifying File Systems

Before we jump straight to mounting a volume for analysis or review, you might want to
identify the file system contained in that volume. There are a number of ways to do this.
The mount command is actually very good at identifying file systems when mounting, so
giving a -t <fstype> option is not always needed (and is often not used). But it is still good
practice to check and record the file system prior to mounting, assuming you will be doing
a manual review of the logical volume contents.

For a simple file system example, download the following file, and check the hash20:
20This image is identical to the one used in previous versions of this guide. We will continue to use it here

172

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

root@forensicbox:~# wget https://www.linuxleo.com/Files/fat_fs.raw

--2019-07-16 12:26:38-- https://www.linuxleo.com/Files/fat_fs.raw

Resolving www.linuxleo.com (www.linuxleo.com)... 74.208.236.144

Connecting to www.linuxleo.com (www.linuxleo.com)|74.208.236.144|:443... connected.

HTTP request sent, awaiting response... 200 OK

Length: 1474560 (1.4M)

Saving to: ’fat_fs.raw’

fat_fs.raw 100%[============================>] 1.41M 3.52MB/s in 0.4s

2019-07-16 12:26:38 (3.52 MB/s) - ’fat_fs.raw’ saved [1474560/1474560]

root@forensicbox:~# sha1sum fat_fs.raw

f5ee9cf56f23e5f5773e2a4854360404a62015cf fat_fs.raw

We can use the file command to give us an idea of what is contained in the image. Remember
that the output of file is dependent on the magic files for your given Linux distribution.
Running the file command on my system gives this:

root@forensicbox:~# file fat_fs.raw

fat_fs.raw: DOS/MBR boot sector, code offset 0x3e+2, OEM-ID "(wA~PIHC" cached by

↪→ Windows 9M, root entries 224, sectors 2880 (volumes <=32 MB), sectors/FAT 9,

↪→ sectors/track 18, serial number 0x16e42d6d, unlabeled, FAT (12 bit), followed

↪→ by FAT

There’s a lot of information provided in the file output. We get the IDs, number of sectors
(this is read from meta data, not from the image size itself), serial number, and other
identifiers. We’ll cover images with separate partitions in a moment. This is a simple image
of a file system that is not part of multi-partition media. You may see images like this
where USB thumb drives or other removable media have been imaged and contain a single
un-partitioned volume.

A quick word on using the file command directly on devices. The file command will
provide a response on exactly the object you reference. If I run file on /dev/sda, for example,
I get notified that it is a block special file. If you want to know more about the device rather
than the device file, then use the -s option to file to specify that we want to know about
the volume being referenced by the /dev block device. Try this on your own system:

root@forensicbox:~# file /dev/sda

/dev/sda: block special (8/0)

root@forensicbox:~# file -s /dev/sda

/dev/sda: DOS/MBR boot sector, extended partition table (last)

because it is small, simple, and provides a good practice set for commands in the following sections.

173

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

root@forensicbox:~# file -s /dev/sda1

/dev/sda1: Linux rev 1.0 ext4 filesystem data, UUID=64c20574-ca10-4401-9b3e-

↪→ a9d3e63e2fc6 (needs journal recovery) (extents) (large files) (huge files)

So we know what file system we are dealing with, now we need to mount the image as a
device so we can see the contents. For that we can use a loop device.

8.12.3 The Loop Device

We can mount the file system(s) within the image using the loop interface. Basically, this
allows you to “mount” a file system within an image file (instead of a disk) to a mount point
and browse the contents. In simple terms, the loop device acts as a “proxy disk” to serve up
the file system as if it were on actual media.

8.12.4 Loop option to the mount command

For a simple file system image (where there are not multiple partitions in the image), we can
use the same mount command and the same options as any other file system on a device, but
this time we include the option loop to indicate that we want to use the loop device to mount
the file system within the image file. Change to the directory where placed the fat_fs.raw,
and type the following (skip the mkdir command if you already created this directory in our
earlier section on mounting external file systems):

root@forensicbox:~# mkdir /mnt/analysis

root@forensicbox:~# mount -t vfat -o ro,loop fat_fs.raw /mnt/analysis

root@forensicbox:~# ls /mnt/analysis

ARP.EXE*
Docs/

FTP.EXE*
Pics/

loveletter.virus*
ouchy.dat*
snoof.gz*

Now you can change to the /mnt/analysis directory and browse the image as if it were a
mounted disk. Use the mount command by itself to double check the mounted options (we
pipe it through grep here to isolate our mount point):

174

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

root@forensicbox:~# mount | grep analysis

/root/fat_fs.raw on /mnt/analysis type vfat (ro,relatime,fmask=0022,dmask=0022,

↪→ codepage=437,iocharset=iso8859-1,shortname=mixed,utf8,errors=remount-ro)

When you are finished browsing, unmount the image file (again, note the command is umount,
not “unmount”):

root@forensicbox:~# umount /mnt/analysis

So what happens with that loop option? When you pass the loop option in the
mount command, you are actually calling a shortcut to creating loop devices with a spe-
cial command, losetup. It is important that we understand the background here.

8.12.5 losetup

Creating loop devices is an important skill. Rather than letting the mount command take
charge of that process, let’s have a look at what is actually going on.

Loop devices are created by the Linux kernel in the /dev directory, just like other devices.

root@forensicbox:~# ls /dev/loop*
/dev/loop-control

/dev/loop0

/dev/loop1

/dev/loop2

/dev/loop3

/dev/loop4

/dev/loop5

/dev/loop6

/dev/loop7

These are devices that can be utilized to associate files with a device. The /dev/loop-control

device is an interface to allow applications to associate loop devices. The command we use
to manage our loop devices is losetup. Invoked by itself, losetup will list associated loop
devices (it will return nothing if no loop devices are in use). In simplest form, you simply
call losetup with the devices name (/dev/loopX) and the file you wish to associate it with:

root@forensicbox:~# losetup /dev/loop0 fat_fs.raw

root@forensicbox:~# losetup -l

NAME SIZELIMIT OFFSET AUTOCLEAR RO BACK-FILE DIO LOG-SEC

/dev/loop0 0 0 0 0 /root/fat_fs.raw 0 512

175

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

root@forensicbox:~# file -s /dev/loop0

/dev/loop0: DOS/MBR boot sector, code offset 0x3e+2, OEM-ID "(wA~PIHC" cached by

↪→ Windows 9M, root entries 224, sectors 2880 (volumes <=32 MB), sectors/FAT 9,

↪→ sectors/track 18, serial number 0x16e42d6d, unlabeled, FAT (12 bit), followed

↪→ by FAT

root@forensicbox:~# sha1sum fat_fs.raw

f5ee9cf56f23e5f5773e2a4854360404a62015cf /dev/loop0

root@forensicbox:~# sha1sum /dev/loop0

f5ee9cf56f23e5f5773e2a4854360404a62015cf fat_fs.raw

In the above commands, we associate the loop device /dev/loop0 with the file fat_fs.raw. We
follow by using the losetup command with the -l option to list the /dev/loop associations.
This is essentially what occurs in the background when you issue the mount command with
the -o loop option we used previously. When we identify the device file contents using
file -s, we get the same as when we ran file on fat_fs.raw. We also see that the hash
of fat_fs.raw matches the now associated loop device, indicating it is an exact duplicate.
With the loop device associated, you can issue the mount command as if fat_fs.raw were a
volume called /dev/loop0:

root@forensicbox:~# mount -t vfat -o ro /dev/loop0 /mnt/analysis/

root@forensicbox:~# mount | grep /mnt/analysis

/dev/loop0 on /mnt/analysis type vfat (ro,relatime,fmask=0022,dmask=0022,codepage

↪→ =437,iocharset=iso8859-1,shortname=mixed,utf8,errors=remount-ro)

root@forensicbox:~# ls /mnt/analysis

ARP.EXE*
Docs/

FTP.EXE*
Pics/

loveletter.virus*
ouchy.dat*
snoof.gz*

root@forensicbox:~# umount /mnt/analysis

In the above command session, we mount the file system associated with /dev/loop0, using
the read-only option (-o ro) on the mount point /mnt/analysis. We check the mount with
the mount command displaying only lines that contain /mnt/analysis (using grep) and then
list the contents of the mount point with ls. We unmount the file system with umount.

Finally, we can remove the loop association with losetup -d:

176

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

root@forensicbox:~# losetup

NAME SIZELIMIT OFFSET AUTOCLEAR RO BACK-FILE DIO LOG-SEC

/dev/loop0 0 0 0 0 /root/fat_fs.raw 0 512

root@forensicbox:~# losetup -d /dev/loop0

root@forensicbox:~# losetup

root@forensicbox:~#

Not all media images are this simple, however...

8.12.6 Mounting Full Disk Images with losetup

The example used in the previous exercise utilizes a simple stand alone file system. What
happens when you are dealing with boot sectors and multi partition disk images? When you
create a raw image of media with dd or similar commands you usually end up with a number
of components to the image. These components can include a boot sector, partition table,
and the various partitions.

If you attempt to mount a full disk image with a loop device, you find that the mount

command is unable to identify the file system. This is because mount does not know how
to “recognize” the partition table. Remember, the mount command handles file systems, not
disks (or disk images). The easy way around this (although it is not very efficient for large
disks) would be to create separate images for each disk partition that you want to analyze.
For a simple hard drive with a single large partition, you could create two images.

One for the entire disk:

root@forensicbox:~# dd if=/dev/sda of=fulldiskimage.raw

And one for the partition:

root@forensicbox:~# dd if=/dev/sda1 of=firstpartitionimage.raw

The first command gets you a full image of the entire disk (/dev/sda) for backup purposes,
including the boot sector and partition table. The second command gets you the first
partition (/dev/sda1). The resulting image from the second command can be mounted via
the loop device, just as with our fat_fs.raw, because it is a simple file system.

Although both of the above images will contain the same file system with the same data,
the hashes will obviously not match. Making separate images for each partition is very
inefficient.

177

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

One method for handling full disks when using the loop device is to send the mount command
a message to skip the boot sector of the image and find the partition. These sectors are used
to contain information (like the MBR) that is not part of a normal file system. We can look at
the offset to a partition, normally given in sectors (using the fdisk command), and multiply
by 512 (the sector size). This gives us the byte offset from the start of our image to the first
partition we want to mount. This is then passed to the mount command as an option, which
essentially triggers the use of an available loop device to mount the specified file system. We
can illustrate this by looking at the raw image of the file we exported with ewfexport in our
earlier acquisitions exercise, the NTFS_Pract_2017.raw file. Navigate to where you have the
file saved.

Very quickly, lets run through the steps we need to mount this image. First time round,
we’ll determine the structure with fdisk, obtain the offset to the actual file system using
math expansion, and then mount the file system using the mount command with the -o loop

option.

root@forensicbox:~# fdisk -l NTFS_Pract_2017.raw

Disk NTFS_Pract_2017.raw: 500 MiB, 524288000 bytes, 1024000 sectors

Units: sectors of 1 *512 = 512 bytes

Sector size (logical/physical): 512 bytes / 512 bytes

I/O size (minimum/optimal): 512 bytes / 512 bytes

Disklabel type: dos

Disk identifier: 0xe8dd21ee

Device Boot Start End Sectors Size Id Type

NTFS_Pract_2017.raw1 2048 1023999 1021952 499M 7 HPFS/NTFS/exFAT

root@forensicbox:~# echo $((2048*512))

1048576

root@forensicbox:~# mount -o ro,loop,offset=1048576 NTFS_Pract_2017.raw /mnt/tmp

root@forensicbox:~# ls /mnt/tmp

ProxyLog1.log*
System\ Volume\ Information/

Users/

Windows/

So here we have a full disk image. We run fdisk on the image (an image file is no different
than a device file) and find that the offset to the partition is 2048 bytes (in red for emphasis).
We use arithmetic expansion to calculate the byte offset (2048*512=1048576) and pass that
as the offset in our mount command. This effectively “jumps over” the boot sector and goes
straight to the first partition, allowing the mount command to work properly. We will explore
this in further detail later.

Note that you can do the calculations for the offset using arithmetic expansion directly in

178

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

the mount command if you choose:

root@forensicbox:~# mount -o ro,loop,offset=$((2048*512)) NTFS_Pract_2017.raw
/mnt/tmp/

Let’s look again and what is going on in the background here with the loop device. We’ll
run through the same mount exercise, but this time using losetup.

First, be sure the file system is unmounted:

root@forensicbox:~# umount /mnt/tmp

Now let’s recreate the mount command using a loop device rather than an offset passed to
mount. In this case we’ll use arithmetic expansion directly in the commands:

root@forensicbox:~# fdisk -l NTFS_Pract_2017.raw

Disk NTFS_Pract_2017.raw: 500 MiB, 524288000 bytes, 1024000 sectors

Units: sectors of 1 *512 = 512 bytes

Sector size (logical/physical): 512 bytes / 512 bytes

I/O size (minimum/optimal): 512 bytes / 512 bytes

Disklabel type: dos

Disk identifier: 0xe8dd21ee

Device Boot Start End Sectors Size Id Type

NTFS_Pract_2017.raw1 2048 1023999 1021952 499M 7 HPFS/NTFS/exFAT

root@forensicbox:~# losetup -o $((2048*512)) --sizelimit
$((1021952*512))/dev/loop0 NTFS_Pract_2017.raw

root@forensicbox:~# losetup -l

NAME SIZELIMIT OFFSET AUTOCLEAR RO BACK-FILE DIO LOG-SEC

/dev/loop0 523239424 1048576 0 0 /root/NTFS_Pract_2017.raw 0 512

root@forensicbox:~# mount /dev/loop0 /mnt/tmp

root@forensicbox:~# ls /mnt/tmp

ProxyLog1.log*
System\ Volume\ Information/

Users/

Windows/

root@forensicbox:~# umount /mnt/tmp

So here we are using the losetup command on an image, but this time we pass it an offset
to a file system inside the image (-o $((2048*512))) and we also let the loop device know
the exact size of the partition we are associating (--sizelimit $((1021952*512))). Once

179

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

we’ve associated the loop device, we mount it to /mnt/tmp and list the contents of the image
with ls21. Finally, we unmount the file system with umount. For a multi partition image,
you could repeat the steps above for each partition you wanted to mount, or you could use a
tool set up to do exactly that. For single partition images like we have here, the --sizelimit

option is actually not required.

8.12.7 Mounting Multi Partition Images with losetup -P

Up to this point we’ve mounted a simple file system image with the mount command, we’ve
mounted a file system from a full disk image with a single partition, and we’ve learned about
the loop device and how to specify its association with a specific partition.

Let’s look now at a disk image that has multiple partitions. Our previous method of identify-
ing each partition by offset and size, and passing those parameters to the losetup command
would work fine to mount multiple file systems within a disk image (using different loop
devices for each partition), but luckily losetup includes an option to probe for and associate
volumes in a disk image with appropriate loop devices.

In simple terms, losetup -P maps partitions within an image to separate loop devices that
can then be mounted the same as any other volume (assuming a mountable file system).

There is a very simple multi partition image you can download and use to practice. The
partitions are empty for maximum compress-ability.

Download the file with wget and check the hash to ensure it matches the one below:

root@forensicbox:~# wget http://www.linuxleo.com/Files/gptimage.raw.gz

--2019-07-17 10:18:44-- http://www.linuxleo.com/Files/gptimage.raw.gz

Resolving www.linuxleo.com (www.linuxleo.com)... 74.208.236.144

Connecting to www.linuxleo.com (www.linuxleo.com)|74.208.236.144|:80... connected.

HTTP request sent, awaiting response... 301 Moved Permanently

Location: https://linuxleo.com/Files/gptimage.raw.gz [following]

--2019-07-17 10:18:45-- https://linuxleo.com/Files/gptimage.raw.gz

Resolving linuxleo.com (linuxleo.com)... 74.208.236.144

Connecting to linuxleo.com (linuxleo.com)|74.208.236.144|:443... connected.

HTTP request sent, awaiting response... 200 OK

Length: 4181657 (4.0M) [application/gzip]

Saving to: ’gptimage.raw.gz’

gptimage.raw.gz 100%[======================>] 3.99M 2.43MB/s in 1.6s

2019-07-17 10:18:48 (2.43 MB/s) - ’gptimage.raw.gz’ saved [4181657/4181657]

21Note the slashes in the output of ls. The backslash is an escape character to allow the spaces within
the directory name System Volume Information/, and the trailing forward slash identifies a directory.
We see there are three directories in the output

180

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

root@forensicbox:~# sha1sum gptimage.raw.gz

b7dde25864b9686aafe78a3d4c77406c3117d30c gptimage.raw.gz

Decompress the gzip’d file with gzip -d and check the hash of the resulting raw image file:

root@forensicbox:~# gzip -d gptimage.raw.gz

root@forensicbox:~# sha1sum gptimage.raw

99b7519cecb9a48d2fd57c673cbf462746627a84 gptimage.raw

We’ll add a couple more options to losetup for this exercise. Previously we used losetup to
simply map a file system in an image to a loop device, and we used losetup with an offset
and sizelimit to specify a single volume in an entire disk image. Now we’ll use the -P option
to probe for additional partitions and create partition nodes within our loop device.

root@forensicbox:~# losetup -Prf --show gptimage.raw

/dev/loop0

Here we are using losetup with the -P option to scan for and associate partitions. We also
use the -r option for ’read only’ and the -f option to ’find the first available loop device’.
The --show option returns the loop device that is assigned to our image. Once we execute
the command above, our partition mappings are created. We can view this by simply using
gdisk -l on the resulting loop device. And we will follow that by listing the partition nodes
and then checking the contents of each partition loop device with the file command:

root@forensicbox:~# gdisk -l /dev/loop0

GPT fdisk (gdisk) version 1.0.5

Partition table scan:

MBR: protective

BSD: not present

APM: not present

GPT: present

Found valid GPT with protective MBR; using GPT.

Disk /dev/loop0: 8388608 sectors, 4.0 GiB

Sector size (logical/physical): 512/512 bytes

Disk identifier (GUID): B46C3ED5-CF96-4906-9BD9-066DD92B9405

Partition table holds up to 128 entries

Main partition table begins at sector 2 and ends at sector 33

First usable sector is 34, last usable sector is 8388574

Partitions will be aligned on 2048-sector boundaries

Total free space is 2014 sectors (1007.0 KiB)

181

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

Number Start (sector) End (sector) Size Code Name

1 2048 206847 100.0 MiB 8300 Linux filesystem

2 206848 2303999 1024.0 MiB 8300 Linux filesystem

3 2304000 8388574 2.9 GiB 8300 Linux filesystem

root@forensicbox:~# ls /dev/loop0*
brw-rw---- 1 root disk 7, 0 Sep 1 11:43 /dev/loop0

brw-rw---- 1 root disk 259, 3 Sep 1 11:43 /dev/loop0p1 <-- note the ’p’value

brw-rw---- 1 root disk 259, 4 Sep 1 11:43 /dev/loop0p2 for each partition

brw-rw---- 1 root disk 259, 5 Sep 1 11:43 /dev/loop0p3

root@forensicbox:~# file -s /dev/loop0p*
/dev/loop0p1: Linux rev 1.0 ext4 filesystem data, UUID=cd5213b1-e674-41b2-8f7f-

↪→ d6f6e97fbdee (extents) (large files) (huge files)

/dev/loop0p2: Linux rev 1.0 ext4 filesystem data, UUID=7f7be41c-4b0d-41d4-8c94-

↪→ ff84a121e542 (extents) (large files) (huge files)

/dev/loop0p3: Linux rev 1.0 ext4 filesystem data, UUID=837a55a6-39f1-433b-bf1a

↪→ -34538feee7e8 (extents) (large files) (huge files)

We can now mount and browse these mapped volumes as we would any other.

root@forensicbox:~# mount /dev/loop0p1 /mnt/tmp

mount: /mnt/tmp: WARNING: device write-protected, mounted read-only.

root@forensicbox:~# ls /mnt/tmp

lost+found/

root@forensicbox:~# mount | grep loop0p1

/dev/loop0p1 on /mnt/tmp type ext4 (ro,relatime)

root@forensicbox:~# umount /mnt/tmp

Once you are finished and the file system is unmounted with the umount command as shown
above, you can delete the mappings with losetup -d /dev/loop0:

root@forensicbox:~# losetup -d /dev/loop0

8.12.8 Mounting Split Image Files with affuse

We are going to continue our exploration of mounting options for image files by addressing
those occasions where you might want to mount and browse an image file that has been split
with dd/split or dc3dd, etc. For that we can use affuse from the afflib package.

182

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

The Advanced Forensic Format (AFF) is an open format for forensic imaging, and the afflib

package provides a number of utilities to create and manipulate images in the AFF format.
We won’t cover those tools, or the AFF format in this document (at least not in this version),
so all we are interested in right now is the affuse utility that comes with afflib.

affuse provides virtual access to a number of image formats, split files among them. It does
this through the File System in User Space software interface. Commonly referred to as “fuse
file systems”, fuse utilities allow us to create application level file system access mechanisms
that can bridge to the kernel and the normal file system drivers.

The afflib package is available as a SlackBuild for Slackware, and can be simply installed
with sboinstall:

root@forensicbox:~# sboinstall afflib

afflib is library and set of tools used to support of Advanced Forensic

Format (AFF).

...

Package afflib-3.7.19-x86_64-1_SBo.tgz installed.

Cleaning for afflib-3.7.19...

The following exercise assumes that the split image you are working with is in raw format
(like a dd image) when reassembled. A file that we will use for a number of exercises later
on is in split format and can be downloaded so you can follow along here. Again, use wget

and check your hash against the one below:

root@forensicbox:~# wget http://www.linuxleo.com/Files/able_3.tar.gz

--2019-07-18 08:28:29-- https://linuxleo.com/Files/able_3.tar.gz

Resolving linuxleo.com... 74.208.236.144

Connecting to linuxleo.com|74.208.236.144|:443... connected.

HTTP request sent, awaiting response... 200 OK

Length: 526734961 (502M) [application/gzip]

Saving to: ’able_3.tar.gz’

able_3.tar.gz 100%[======================>] 502.33M 3.11MB/s in 3m 31s

2019-07-18 08:32:02 (2.38 MB/s) - ’able_3.tar.gz’ saved [526734961/526734961]

root@forensicbox:~# sha1sum able_3.tar.gz

6d8de5017336028d3c221678b483a81e341a9220 able_3.tar.gz

View the contents of the archive with the following command:

183

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

root@forensicbox:~# tar tzf able_3.tar.gz

able_3/

able_3/able_3.000

able_3/able_3.001

able_3/able_3.log

able_3/able_3.003

able_3/able_3.002

Now we can extract the archive using the tar command with the extract option (x) rather
than the option to list contents (t):

root@forensicbox:~# tar xzvf able_3.tar.gz

able_3/

able_3/able_3.000

able_3/able_3.001

able_3/able_3.log

able_3/able_3.003

able_3/able_3.002

First, change to the able_3 directory with cd. Note our command prompt changed to reflect
our working directory. We now have 4 image files (.000-.003) and a log file. The input
section of the log file shows that this image is a 4G image taken with dc3dd and split into 4
parts.

root@forensicbox:~# cd able_3

root@forensicbox:able_3# cat able_3.log

dc3dd 7.2.646 started at 2017-05-25 15:51:04 +0000

compiled options:

command line: dc3dd if=/dev/sda hofs=able_3.000 ofsz=1G hash=sha1 log=able_3.log

device size: 8388608 sectors (probed), 4,294,967,296 bytes

sector size: 512 bytes (probed)

4294967296 bytes (4 G) copied (100%), 1037.42 s, 3.9 M/s

4294967296 bytes (4 G) hashed (100%), 506.481 s, 8.1 M/s

input results for device ‘/dev/sda’:

8388608 sectors in

0 bad sectors replaced by zeros

2eddbfe3d00cc7376172ec320df88f61afda3502 (sha1)

4ef834ce95ec545722370ace5a5738865d45df9e, sectors 0 - 2097151

ca848143cca181b112b82c3d20acde6bdaf37506, sectors 2097152 - 4194303

3d63f2724304205b6f7fe5cadcbc39c05f18cf30, sectors 4194304 - 6291455

9e8607df22e24750df7d35549d205c3bd69adfe3, sectors 6291456 - 8388607

output results for files ‘able_3.000’:

184

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

8388608 sectors out

[ok] 2eddbfe3d00cc7376172ec320df88f61afda3502 (sha1)

[ok] 4ef834ce95ec545722370ace5a5738865d45df9e, sectors 0 - 2097151, ‘able_3

↪→ .000’

[ok] ca848143cca181b112b82c3d20acde6bdaf37506, sectors 2097152 - 4194303, ‘

↪→ able_3.001’

[ok] 3d63f2724304205b6f7fe5cadcbc39c05f18cf30, sectors 4194304 - 6291455, ‘

↪→ able_3.002’

[ok] 9e8607df22e24750df7d35549d205c3bd69adfe3, sectors 6291456 - 8388607, ‘

↪→ able_3.003’

dc3dd completed at 2017-05-25 16:08:22 +0000

Let’s check the hash of the image parts combined and compare to the log:

root@forensicbox:able_3# cat able_3.00*| sha1sum

2eddbfe3d00cc7376172ec320df88f61afda3502 -

Remember that the cat command simply streams the files one after the other and sends
them through standard out. The sha1sum command takes the data from the pipe and hashes
it. As we mentioned earlier, the ’ - ’ in the hash output indicates standard input was hashed,
not a file. The hashes match and our image is good.

Now suppose we want to mount the images to see the file systems and browse or search
them for specific files. One solution would be to use the cat command like we did above and
redirect the output to a new file made up of all the segments.

root@forensicbox:able_3# cat able_3.0*> able_3.raw

root@forensicbox:able_3# ls -lh able_3.raw

-rw-r--r-- 1 root root 4.0G Jul 18 09:13 able_3.raw

root@forensicbox:able_3# sha1sum able_3.raw

2eddbfe3d00cc7376172ec320df88f61afda3502 able_3.raw

The problem with this approach is that it takes up twice the space as we are essentially
duplicating the entire acquired disk, but in a single image rather than split. Not very
efficient for resource management.

We need a way to take the split images and create a virtual "whole disk" that we can mount
using techniques we’ve learned already. We’ll use affuse and the fuse file system it provides.
All we need to do is call affuse with the name of the first segment of our split image and
provide a mount point where we can access the virtual disk image:

185

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

root@forensicbox:able_3# mkdir /mnt/aff

root@forensicbox:able_3# affuse able3.000 /mnt/aff

root@forensicbox:able_3# ls -lh /mnt/aff

total 0

-r--r--r-- 1 root root 4.0G Dec 31 1969 able_3.000.raw

root@forensicbox:able_3# sha1sum /mnt/aff/able_3.000.raw

2eddbfe3d00cc7376172ec320df88f61afda3502 /mnt/aff/able_3.000.raw

In the above session, we create a mount point for our fuse image (the name here is arbitrary)
with the mkdir command. The we use affuse with the first segment of our four part image
and fuse mount it to /mnt/aff. affuse creates our single virtual image file for us in /mnt/aff

and names it with the image name and the .raw extension. Finally, we check the hash of
this new virtual image and find it’s the same as the hash for the input and output bytes (for
the total disk) in our log file. We’ve just created a virtual raw "whole disk" image from our
split image.

Now we can run gdisk or fdisk on the image to identify the partition layout; we can use
losetup -P to map the partitions to loop devices we can mount; and we can run the file

command to identify the file systems for further investigation. All this as we have learned
in preceding sections when working on complete image files:

root@forensicbox:able_3# fdisk -l /mnt/aff/able_3.000.raw

Disk /mnt/aff/able_3.000.raw: 4 GiB, 4294967296 bytes, 8388608 sectors

Units: sectors of 1 * 512 = 512 bytes

Sector size (logical/physical): 512 bytes / 512 bytes

I/O size (minimum/optimal): 512 bytes / 512 bytes

Disklabel type: gpt

Disk identifier: B94F8C48-CE81-43F4-A062-AA2E55C2C833

Device Start End Sectors Size Type

/mnt/aff/able_3.000.raw1 2048 104447 102400 50M Linux filesystem

/mnt/aff/able_3.000.raw2 104448 309247 204800 100M Linux filesystem

/mnt/aff/able_3.000.raw3 571392 8388574 7817183 3.7G Linux filesystem

root@forensicbox:able_3# losetup -Prf --show /mnt/aff/able_3.000.raw

/dev/loop0

root@forensicbox:able_3# ls -l /dev/loop0*
brw-rw---- 1 root disk 7, 0 Sep 2 10:20 /dev/loop0

brw-rw---- 1 root disk 259, 0 Sep 2 10:20 /dev/loop0p1

brw-rw---- 1 root disk 259, 1 Sep 2 10:20 /dev/loop0p2

brw-rw---- 1 root disk 259, 2 Sep 2 10:20 /dev/loop0p3

186

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

root@forensicbox:able_3# file -s /dev/loop0p*
/dev/loop0p1: Linux rev 1.0 ext4 filesystem data, UUID=ca05157e-f7b3-4c6a-9b63-235

↪→ c4cad7b73 (extents) (large files) (huge files)

/dev/loop0p2: Linux rev 1.0 ext4 filesystem data, UUID=c4ac4c0f-d9de-4d26-9e16

↪→ -10583b607372 (extents) (large files) (huge files)

/dev/loop0p3: Linux rev 1.0 ext4 filesystem data, UUID=c7f748b2-3a38-44e9-aa43-

↪→ f924955b9fdd (extents) (large files) (huge files)

So without having to reassemble the split images to a single image, we were able to map the
partitions and identify the file systems ready for mounting.

root@forensicbox:able_3# mount -o ro -t ext4 /dev/loop0p1 /mnt/analysis/

root@forensicbox:able_3# ls /mnt/analysis

README.initrd@ config-huge-4.4.14 onlyblue.dat

System.map@ elilo-ia32.efi* slack.bmp

System.map-generic-4.4.14 elilo-x86_64.efi* tuxlogo.bmp

System.map-huge-4.4.14 grub/ tuxlogo.dat

boot.0800 inside.bmp vmlinuz@

boot_message.txt inside.dat vmlinuz-generic@

coffee.dat lost+found/ vmlinuz-generic-4.4.14

config@ map vmlinuz-huge@

config-generic-4.4.14 onlyblue.bmp vmlinuz-huge-4.4.14

When we have finished with the affuse mount point, we remove it with the fusermount -u

command. This removes our virtual disk image from the mount point. REMEMBER we must
unmount any mounted file systems from the image, and then delete our loop associations
with losetup -d /dev/loopX prior to our fuse unmount.

root@forensicbox:able_3# umount /mnt/analysis

root@forensicbox:able_3# losetup -d /dev/loop0

root@forensicbox:able_3# fusermount -u /mnt/aff

8.12.9 Mounting EWF files with ewfmount

Just as we are bound to come across split images we want to browse, we are also likely to
come across Expert Witness (E01 or EWF) files that we want to peak into without having to
restore them and take up much more space than we need to.

We’ve already installed libewf as part of our acquisition lessons earlier. If you have not done
so already, you can install libewf with sboinstall on Slackware or using whichever method

187

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

your distribution of choice allows. For this section we are interested in the ewfmount utility
that comes with libewf.

Like affuse, ewfmount provides a fuse file system. It is called in the same way, and results
in the same virtual raw disk image that can be parsed for partitions and loop mounted for
browsing. If you read the prior section on affuse, this will all be very familiar. We will use
the EWF version of NTFS_Pract_2017.E0* files we used in our earlier exercises.

It might be a good idea to run ewfverify (also from the libewf package – recall we used it
in the acquisitions section) to ensure the integrity of the E01 set is still intact.

root@forensicbox:~# cd NTFS_Pract_2017

root@forensicbox:NTFS_Pract_2017# ewfverify NTFS_Pract_2017.E01

ewfverify 20140806

Verify started at: Jul 18, 2019 09:56:58

This could take a while.

Verify completed at: Jul 18, 2019 09:56:59

Read: 500 MiB (524288000 bytes) in 1 second(s) with 500 MiB/s (524288000 bytes/

↪→ second).

MD5 hash stored in file: eb4393cfcc4fca856e0edbf772b2aa7d

MD5 hash calculated over data: eb4393cfcc4fca856e0edbf772b2aa7d

ewfverify: SUCCESS

Make note of the MD5 hash from our ewfverify output.

Now we create our EWF mount point (again this is an arbitrary name). Use the ewfmount

command to fuse mount the image files. You only need to provide the first file name for the
image set. ewfmount will find the rest of the segments. We can use the ls command on our
mount point to see the fuse mounted disk image that resulted:

root@forensicbox:NTFS_Pract_2017# mkdir /mnt/ewf

root@forensicbox:NTFS_Pract_2017# ewfmount NTFS_Pract_2017.E01 /mnt/ewf

ewfmount 20140806

root@forensicbox:NTFS_Pract_2017# ls /mnt/ewf

ewf1

Our virtual disk image is ewf1. Let’s hash that and compare it to our ewfverify output
above. As you can see, we get a match:

188

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

root@forensicbox:NTFS_Pract_2017# md5sum /mnt/ewf/ewf1

eb4393cfcc4fca856e0edbf772b2aa7d /mnt/ewf/ewf1

And now once again we are ready to parse and mount our fuse disk image using the techniques
we’ve already learned. Remember, the fuse mounted image (/mnt/ewf/ewf1) is a raw image:

root@forensicbox:NTFS_Pract_2017# fdisk -l /mnt/ewf/ewf1

Units: sectors of 1 * 512 = 512 bytes

Sector size (logical/physical): 512 bytes / 512 bytes

I/O size (minimum/optimal): 512 bytes / 512 bytes

Disklabel type: dos

Disk identifier: 0xe8dd21ee

Device Boot Start End Sectors Size Id Type

/mnt/ewf/ewf1p1 2048 1023999 1021952 499M 7 HPFS/NTFS/exFAT

root@forensicbox:NTFS_Pract_2017# losetup -Prf --show

/dev/loop0

root@forensicbox:NTFS_Pract_2017# file -s /dev/loop0p*
/dev/loop0p1: DOS/MBR boot sector, code offset 0x52+2, OEM-ID

"NTFS ", sectors/cluster 8, Media descriptor 0xf8,

sectors/track 63, heads 255, hidden sectors 2048, dos < 4.0

BootSector (0x0), FAT (1Y bit by descriptor); NTFS, sectors/track

63, physical drive 0x80, sectors 1021951, $MFT start cluster

42581, $MFTMirror start cluster 2, bytes/RecordSegment

2^(-1*246), clusters/index block 1, serial number

0cae0dfd2e0dfc2bd; contains bootstrap BOOTMGR

root@forensicbox:NTFS_Pract_2017# mount -o ro -t ntfs-3g /dev/loop0p1
/mnt/analysis

root@forensicbox:NTFS_Pract_2017# ls /mnt/analysis

ProxyLog1.log* System\ Volume\ Information/ Users/ Windows/

Using fdisk -l, we see the structure of the image. We use losetup -P with the read-only
option (-r), find the first available loop device (-f) to add the loop mapping for the partition.
We use the the file command with the (-s) option to confirm the file system type. In this
case we see it is NTFS. Finally we mount the volume with the mount command using the
ntfs-3g22 file system driver (-t ntfs-3g).

22There are a number of useful options when mounting with ntfs-3g, like show_sys_files or
streams_interface=windows. We don’t cover them here, but you might want to look at man mount
↪→ .ntfs-3g for more information.

189

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

And, as before, when we are finished we need to unmount the volume, delete the mappings,
and then unmount the fuse file system. This is the same set of steps (forward and backward)
we did with affuse and the split image.

root@forensicbox:NTFS_Pract_2017# umount /mnt/analysis

root@forensicbox:NTFS_Pract_2017# losetup -d /dev/loop0

root@forensicbox:NTFS_Pract_2017# fusermount -u /mnt/ewf

And that covers our section on mounting evidence. As with everything in this guide, we’ve
left a lot of detail out. Experiment and read the man pages. Make sure you know what you
are doing when dealing with real evidence. Mounting and browsing images should always be
done on working copies when possible.

9 Basic Analysis

In this section we’ll begin our exploration of basic command line functionality to review
mounted evidence. So far we’ve covered tools that allow us to access our evidence, now it’s
time to explore it.

Most of what we cover here will be applicable in actual examinations. Some of it, you will
find, can better be accomplished using other more focused tools. But as with everything
else, we are building a foundation for Linux platform knowledge, not just a subset of forensic
tools. Once again, there may be times where you are left with only those tools that come
with a majority of distributions. It is helpful to know your way around some of these basic
utilities.

We’ll start with something that is useful, even on a fully equipped forensic platform: Virus
scanning.

9.1 Anti Virus - Scanning the Evidence with clamav

Part of our approach to understanding and deploying Linux as a computer forensic platform
is making the entire process "stand alone". The goal of this guide is to enable you to conduct
an exam – from analysis through reporting – within the Linux (and preferably command
line) environment. One of those steps we should consider taking in almost all examinations
we are tasked with is to scan our acquired data with some sort of anti-virus tool.

We’ve all heard the ever famous "Trojan Horse Defense", where we worry that malicious
activity will be blamed on an infected computer that the defendant "had no control over".

190

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

While it’s not something I’ve personally experienced, it has happened and is well docu-
mented23. Scanning the evidence makes sense for both making your case more solid and
from an exculpatory point of view. If there are circumstances where malware may have
played a role, we will certainly want to know that.

There are other considerations that warrant a virus/malware scan, and it can very specifically
depend on the type of case you are investigating. Simply making it part of some check list
routine for analysis is fine, but you must still have an understanding of why the scan is done,
and how it applies to the current case. For example, if the media being examined is the
victim of compromise, then a virus scan can provide a staring point for additional analysis.
The starting point can be as simple as identifying a vector, and utilizing file dates and times
to drive additional analysis. Alternatively, we may find ourselves examining the computer
in a child exploitation case. Negative results, while presumptive, can still help to combat
the previously discussed Trojan Horse Defense. The bottom line is that a simple virus scan
should always be included as standard practice. And while there are plenty of tools out there
compatible with Linux, we will focus on ClamAV.

ClamAV is open source and freely available. It is well supported and is quite comparable
to other anti-virus with respect to identifying infections and artifacts. If you are deploying
Linux in a laboratory environment, it also provides excellent backup and cross-verification
to anti-virus results provided in other operating systems.

We already installed the ClamAV package earlier in the section covering external software.
If you have not done so, either install clamav via the SlackBuild (using sboinstall) or via
your distribution’s package management method.

ClamAV has far more uses and configuration options than we will cover here. It can be used
to scan “on use” volumes, email servers, and has options and uses for “safe browsing”. There
are tools installed with the ClamAV package that allow for byte code review, submission of
samples, and to assist with daemon mode configuration. We will be using it to scan acquired
evidence. This assumes we will update it as needed and run it on targeted image files,
volumes or mount points. With our simplified use case, we will concentrate on two specific
ClamAV tools: freshclam and clamscan.

Once ClamAV is installed, we will need to download the definition files. We do this with
freshclam. This command will download the appropriate files with the initial main.cvd, as
well as the daily.cvd containing the most recent signatures:

root@forensicbox:~# freshclam

ClamAV update process started at Thu Jul 18 13:07:15 2019

WARNING: [LibClamAV] cl_cvdhead: Can’t read CVD header in main.cvd

Downloading main.cvd [100%]

main.cvd updated (version: 58, sigs: 4566249, f-level: 60, builder: sigmgr)

WARNING: [LibClamAV] cl_cvdhead: Can’t read CVD header in daily.cvd

23http://digitalcommons.law.scu.edu/cgi/viewcontent.cgi?article=1370&context=chtlj

191

http://digitalcommons.law.scu.edu/cgi/viewcontent.cgi?article=1370&context=chtlj

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

Downloading daily.cvd [100%]

daily.cvd updated (version: 25514, sigs: 1660366, f-level: 63, builder: raynman)

Downloading bytecode.cvd [100%]

bytecode.cvd updated (version: 330, sigs: 94, f-level: 63, builder: neo)

Database updated (6226709 signatures) from database.clamav.net (IP: 104.16.218.84)

WARNING: Clamd was NOT notified: Can’t connect to clamd through /var/run/clamav/

↪→ clamd.socket: No such file or directory

Here we see the download of main.cvd, daily.cvd and bytecode.cvd. There are a couple of
warnings issued, and this is because the files do not exist and freshclam attempts to read the
version headers before updating. Subsequent updates will not show these warnings. We also
get a warning that Clamd was NOT notified. This is because we are not running a scanning
daemon (common for mail servers). You can run freshclam --no-warnings if you wish to
suppress those.

We are now ready to run clamscan on our target. ClamAV supports direct scanning of files,
and can recurs through many different file types and archive, including zip files, PDF files,
mount points and forensic image files (GPT and MBR partition types). The most reliable
way of running clamscan is to run it on a mounted file system.

There are options within clamscan to copy or move infected files to alternative directories.
Normally we do not do this with infected files or malware during a forensic examination,
preferring to examine the files in place, or extract them with forensic tools. Check man

↪→ clamscan for additional details if you are interested. The output of clamscan can be
logged with the --log=logfile option, useful for keeping complete examination notes.

We will try out clamscan on our NTFS EWF files we downloaded previously. Change into
the directory the files are located in, use ewfmount to mount the images, and then losetup -P

to map the NTFS partition. If you do not already have the destination mount points in /mnt

created, then use mkdir to create them now. We will scan the NTFS partition.

root@forensicbox:~# cd NTFS_Pract_2017

root@forensicbox:NTFS_Pract_2017# ewfmount NTFS_Pract_2017.E01 /mnt/ewf

ewfmount 20140806

root@forensicbox:NTFS_Pract_2017# losetup -Prf --show /mnt/ewf/ewf1

/dev/loop0

root@forensicbox:NTFS_Pract_2017# mount -o ro -t ntfs-3g /dev/loop0p1
/mnt/analysis

root@forensicbox:NTFS_Pract_2017# clamscan -r -i /mnt/analysis --log=NTFS_AV.txt

/mnt/analysis/Windows/System32/eicar.com: Win.Test.EICAR_HDB-1 FOUND

192

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

----------- SCAN SUMMARY -----------

Known viruses: 8774757

Engine version: 0.102.4

Scanned directories: 26

Scanned files: 187

Infected files: 1

Data scanned: 213.82 MB

Data read: 95.12 MB (ratio 2.25:1)

Time: 83.347 sec (1 m 23 s)

Using ewfmount, we fuse mount the EWF files to /mnt/ewf, and then we use losetup -P to
map the NTFS partition, which is then mounted on /mnt/analysis. The command clamscan

is then run with the -r option for recursive (scan sub directories), and -i to only show
infected files. The -i option prevents overly cluttered output (lists of “OK” files). Finally,
we use --log to document our output. The virus signature found is for a common anti-virus
test file.

View the resulting log with cat:

root@forensicbox:NTFS_Pract_2017# cat NTFS_AV.txt

/mnt/analysis/Windows/System32/eicar.com: Win.Test.EICAR_HDB-1 FOUND

----------- SCAN SUMMARY -----------

Known viruses: 8774757

Engine version: 0.102.4

Scanned directories: 26

Scanned files: 187

Infected files: 1

Data scanned: 213.82 MB

Data read: 95.12 MB (ratio 2.25:1)

Time: 83.347 sec (1 m 23 s)

Note that a single positive hit Win.Test.EICAR_HDB-1 was found. This is a purposely placed
AV test file in the image. When you are finished, unmount the NTFS file system, remove
the losetup mapping, and unmount the fuse mounted image.

root@forensicbox:NTFS_Pract_2017# umount /mnt/analysis

root@forensicbox:NTFS_Pract_2017# losetup -d /dev/loop0

root@forensicbox:NTFS_Pract_2017# fusermount -u /mnt/ewf

193

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

This is a very simple example of virus scanning evidence with ClamAV. This is an excep-
tionally powerful tool, and you should explore the man page and the online documentation.

9.2 Basic Data Review on the Command Line

Linux comes with a number of simple utilities that make imaging and basic review of sus-
pect disks and drives comparatively easy. We’ve already covered dd, fdisk, limited grep

commands, hashing and file identification with the file command. We’ll continue to use
those tools, and also cover some additional utilities in some hands on exercises.

Following is a very simple series of steps to allow you to perform an easy practice data review
using the simple tools mentioned above. All of the commands can be further explored with
man [command]. Again, this is just an introduction to the basic commands. Our focus here
is on the commands themselves, NOT on the file system we are reviewing. These steps can
be far more powerful with some command line tweaking.

Having already said that this is just an introduction, most of the work you will do here can
be applied to actual casework. The tools are standard GNU/Linux tools, and although the
example shown here is very simple, it can be extended with some practice and a little (OK,
a lot) of reading. The practice file system we’ll use here is a simple old raw image of a FAT
file system produced by the dd command24 We used this image in some previous exercises.
If you have not already, download it now. You can do this as a normal user with wget:

barry@forensicbox:~$ wget https://www.linuxleo.com/Files/fat_fs.raw

--2019-07-18 21:13:10-- https://www.linuxleo.com/Files/fat_fs.raw

Resolving www.linuxleo.com... 74.208.236.144

Connecting to www.linuxleo.com|74.208.236.144|:443... connected.

HTTP request sent, awaiting response... 200 OK

Length: 1474560 (1.4M)

Saving to: ’fat_fs.raw’

fat_fs.raw 100%[================>] 1.41M 4.29MB/s in 0.3s

2019-07-18 21:13:11 (4.29 MB/s) - ’fat_fs.raw’ saved [1474560/1474560]

barry@forensicbox:~$ sha1sum fat_fs.raw

f5ee9cf56f23e5f5773e2a4854360404a62015cf fat_fs.raw

The output of various commands and the amount of searching we will do here is limited by
the scope of this example and the amount of data in this very small image.

As we previously mentioned, when you actually do an analysis on larger media, you will
24This is the exact same image as the previously named practical.floppy.dd.

194

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

want to have it organized. When you issue a command that results in an output file, that
file will end up in your current directory, unless you specify a path for it.

One way of organizing your data would be to create a directory in your home directory for
evidence and then a sub directory for different cases. You can create your output directory on
any media or volume you like. For the sake of simplicity here, we’ll use our home directory.
We’ll go ahead and do this as a regular user, so we can get used to running commands needed
for root access. It’s never a good idea to do all your work logged in as root. Here’s our
command to create an output directory for analysis results. We are executing the command
in the directory where we placed our image file above. The ./ in front of the directory name
we are creating indicates “in the current directory”:

barry@forensicbox:~$ mkdir ./analysis

barry@forensicbox:~$ ls

analysis/ fat_fs.raw

Directing all of our analysis output to this directory will keep our output files separated from
everything else and helps maintain case organization. You may wish to have a separate drive
mounted as /mnt/analysis to hold your analysis output. How you organize it is up to you.

An additional step you might want to take is to create a special mount point for all subject
file system analysis. This is another way of separating common system use with evidence
processing. To create a mount point in the /mnt directory you will need to be temporarily
logged in as root. In this case we’ll log in as root, create a mount point, and then mount the
fat_fs.raw image for further examination. Recall our discussion on the “super user” (root).
We use the command su to become root:

barry@forensicbox:~$ su -

Password: <enter root password>

root@forensicbox:~# mkdir /mnt/evid

Still using our root login, we’ll go ahead and mount the fat_fs.raw image on /mnt/evid:

root@forensicbox:~# mount -t vfat -o ro,loop ~barry/fat_fs.raw /mnt/evid

root@forensicbox:~# losetup

NAME SIZELIMIT OFFSET AUTOCLEAR RO BACK-FILE

/dev/loop0 0 0 1 1 /home/barry/fat_fs.raw

The first command above is our mount command with the file system type set to
vfat (-t vfat) and the options (-o) read only (ro) and using the loop device (loop). The
file system we are mounting, fat_fs.raw, is located in /home/barry (as indicated by the tilde

195

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

in front of the user’s name) mounting it on /mnt/evid. For illustration, we use the loop
command to show the loop association. There are other useful mount options as well, such
as noatime and noexec. See man mount for more details.

With the image mounted, we can exit our root login.

root@forensicbox:~# exit

barry@forensicbox:~$

You can now view the contents of the read-only, loop mounted image. This is where you
may find the command line a powerful tool, allowing file redirection and other methods to
permanently record your analysis.

Let’s assume you are issuing the following commands from the proper mount point
(/mnt/evid). If you want to save a copy of each command’s output, be sure to re-direct the
output to your evidence directory (~/analysis) using an explicit path. Again, if you are
logged in as user timmy, then the tilde is a shortcut to /home/timmy. So in my case, typing
~/analysis is the same as typing /home/barry/analysis.

Navigate through the directories and see what you can find. Use the ls command. Again,
you should be in the directory /mnt/evid, where the image is mounted.

• The evidence is mounted on /mnt/evid

• We will be writing our results to ~/analysis

You can begin with a simple listing of the contents of the volume:

barry@forensicbox:evid$ ls -l

total 107

-rwxr-xr-x 1 root root 19536 Aug 24 1996 ARP.EXE*
drwxr-xr-x 3 root root 512 Sep 23 2000 Docs/

-rwxr-xr-x 1 root root 37520 Aug 24 1996 FTP.EXE*
drwxr-xr-x 2 root root 512 Sep 23 2000 Pics/

-r-xr-xr-x 1 root root 16161 Sep 21 2000 loveletter.virus*
-rwxr-xr-x 1 root root 21271 Mar 19 2000 ouchy.dat*
-rwxr-xr-x 1 root root 12384 Aug 2 2000 snoof.gz*

This will list the files in long format to identify permission, date, etc. (-l). You can also use
the -R option to list recursively through directories. You might want to pipe that through
less.

196

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

barry@forensicbox:evid$ ls -lR | less

.:

total 107

-rwxr-xr-x 1 root root 19536 Aug 24 1996 ARP.EXE*
drwxr-xr-x 3 root root 512 Sep 23 2000 Docs/

-rwxr-xr-x 1 root root 37520 Aug 24 1996 FTP.EXE*
drwxr-xr-x 2 root root 512 Sep 23 2000 Pics/

-r-xr-xr-x 1 root root 16161 Sep 21 2000 loveletter.virus*
-rwxr-xr-x 1 root root 21271 Mar 19 2000 ouchy.dat*
-rwxr-xr-x 1 root root 12384 Aug 2 2000 snoof.gz*

./Docs:

total 57

-rwxr-xr-x 1 root root 17920 Sep 21 2000 Benchmarks.xls*
-rwxr-xr-x 1 root root 2061 Sep 21 2000 Computer_Build.xml*
-rwxr-xr-x 1 root root 32768 Sep 21 2000 Law.doc*
drwxr-xr-x 2 root root 512 Sep 23 2000 Private/

-rwxr-xr-x 1 root root 3928 Sep 21 2000 whyhack*

./Docs/Private:

total 0

./Pics:

total 1130

-rwxr-xr-x 1 root root 94426 Mar 19 2000 C800x600.jpg*
-rwxr-xr-x 1 root root 243245 Sep 21 2000 Stoppie.gif*
-rwxr-xr-x 1 root root 183654 Sep 21 2000 bike2.jpg*
-rwxr-xr-x 1 root root 187598 Sep 21 2000 bike3.jpg*
-rwxr-xr-x 1 root root 27990 Sep 21 2000 matrixs3.jpg*
-rwxr-xr-x 1 root root 418582 Sep 21 2000 mulewheelie.gif*

We are looking at files on a FAT partition using Linux tools. Things like permissions can be
a little misleading depending on the file system. This is where some of our more advanced
forensic tools come in later.

Use the space bar to scroll through the recursive list of files. Remember that the letter q
will quit a paging (less) session.

One important step in any analysis is verifying the integrity of your data both before after
the analysis is complete. We’ve already covered integrity checks on disks and images. The
same commands work on individual files. You can get a hash (CRC, MD5, or SHA) of each
file in a number of different ways. In this example, we will use the SHA1 hash. We can get
an SHA1 hash of an individual file by changing to our evidence directory (/mnt/evid) and
running the following command on one of the files(these commands can be replaced with
md5sum if you prefer to use the MD5 hash algorithm).

197

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

barry@forensicbox:evid$ sha1sum ARP.EXE

49f0405267a653bac165795ee2f8d934fb1650a9 ARP.EXE

barry@forensicbox:evid$ sha1sum ARP.EXE > /analysis/ARP.sha1.txt

barry@forensicbox:evid$ cat /analysis/ARP.sha1.txt

49f0405267a653bac165795ee2f8d934fb1650a9 ARP.EXE

The redirection in the second command, using the > allows us to store the signature in
the file ~/analysis/ARP.sha1.txt and use it later on. Having hashes of individual files can
serve a number of purposes, including matching the hashes against lists of known bad files
(contraband files or malware, for example), or for eliminating known good files from an
examination. There are also times you might simply be asked to provide a list of all files
on a volume, and including a hash of each file is simply good practice. Doing this as an
individual command for each file on a disk would be tedious at best.

We can get a hash of every file on the disk using the find command and an option that
allows us to execute an additional command on each file found. We can get a very useful
list of SHA1 hashes for every file in our mount point by using find to identify all the regular
files on the file system and run a hash on all those files:

barry@forensicbox:evid$ find .-type f -exec sha1sum {} \; >
~/analysis/sha1.filelist.txt

barry@forensicbox:evid$ cat ~/analysis/sha1.filelist.txt

86082e288fea4a0f5c5ed3c7c40b3e7947afec11 ./Docs/Benchmarks.xls

81e62f9f73633e85b91e7064655b0ed190228108 ./Docs/Computer_Build.xml

0950fb83dd03714d0c15622fa4c5efe719869e48 ./Docs/Law.doc

7a1d5170911a87a74ffff8569f85861bc2d2462d ./Docs/whyhack

63ddc7bca46f08caa51e1d64a12885e1b4c33cc9 ./Pics/C800x600.jpg

8844614b5c2f90fd9df6f8c8766109573ae1b923 ./Pics/bike2.jpg

4cf18c44023c05fad0de98ed6b669dc4645f130b ./Pics/bike3.jpg

aeb0151e67ff4dd5c00a19ee351801b5a6f11438 ./Pics/matrixs3.jpg

d252ac06995c1a6215ca5e7df7c3e02c79c24488 ./Pics/mulewheelie.gif

f6f8586eefb5f163eac2bd8ec09053d70cae000e ./Pics/Stoppie.gif

49f0405267a653bac165795ee2f8d934fb1650a9 ./ARP.EXE

9a886c8e8ad376fc53d6398cdcf8aab9e93eda27 ./FTP.EXE

4c703ee9802aa110b0673d7ae80468e6418bf74c ./loveletter.virus

7191c24f0f15cca6a5ef9a4db0aee7b40789d6c0 ./ouchy.dat

6666d9b50508360f4a2362e7fd74c91fcb68d2e8 ./snoof.gz

This command says “find, starting in the current directory (signified by the "."), any regular
file (-type f) and execute (-exec) the command sha1sum on all files found ({}). Redirect
the output to sha.filelist.txt in the ~/analysis directory (where we are storing all of our
evidence files). The \; is an escape sequence that ends the -exec command. The result is a

198

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

list of files from our analysis mount point and their SHA hashes. Again, you can substitute
the md5sum command if you prefer.

We then look at the hashes by using the cat command to stream the file to standard output
(in this case, our terminal screen), as in the second command above.

You can also do your verification (or hash matching) using a hash list created with one of our
hashing programs (sha1sum, md5sum, etc.), you can use the -c option. If the files match those
in the hash list, the command will return OK. Making sure you are in a directory where the
relative paths provided in the list will target the correct files, use the following command:

barry@forensicbox:evid$ sha1sum -c ~/analysis/sha1.filelist.txt

./Docs/Benchmarks.xls: OK

./Docs/Computer_Build.xml: OK

./Docs/Law.doc: OK

./Docs/whyhack: OK

./Pics/C800x600.jpg: OK

./Pics/bike2.jpg: OK

./Pics/bike3.jpg: OK

./Pics/matrixs3.jpg: OK

./Pics/mulewheelie.gif: OK

./Pics/Stoppie.gif: OK

./ARP.EXE: OK

./FTP.EXE: OK

./loveletter.virus: OK

./ouchy.dat: OK

./snoof.gz: OK

Again, the SHA hashes in the file will be compared with SHA sums taken from the mount
point. If anything has changed, the program will give a FAILED message. If there are failed
hashes, you will get a message summarizing the number of failures at the bottom of the
output. This is the fastest way to verify hashes. Note that the filenames start with ./ this
indicates a relative path. Meaning that we must be in the same relative directory when we
check the hashes, since that’s where the command will look for the files.

Let’s get creative. Take the ls command we used earlier and redirect the output to your
~/analysis directory. With that you will have a list of all the files and their owners and
permissions on the subject file system. Check the man page for various uses and options. For
example, you could use the -i option to include the inode in the list (for Linux file systems),
the -t option can be used so that the output will include and sort by modification time.

barry@forensicbox:evid$ ls -lRt

You could also get a list of the files, one per line, using the find command (with -type f)
and redirecting the output to another file.

199

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

barry@forensicbox:evid$ find .-type f > ~/analysis/find.filelist.txt

Or a list of just directories (-type d)

barry@forensicbox:evid$ find . -type d > ~/analysis/find.dirlist.txt

There is also the tree command, which prints a recursive listing that is more visual...It
indents the entries by directory depth and colorizes the filenames (if the terminal is correctly
set).

barry@forensicbox:evid$ tree

.

|-- ARP.EXE

|-- Docs

| |-- Benchmarks.xls

| |-- Computer_Build.xml

| |-- Law.doc

| |-- Private

| ‘-- whyhack

|-- FTP.EXE

|-- Pics

| |-- C800x600.jpg

| |-- Stoppie.gif

| |-- bike2.jpg

| |-- bike3.jpg

| |-- matrixs3.jpg

| ‘-- mulewheelie.gif

|-- loveletter.virus

|-- ouchy.dat

‘-- snoof.gz

3 directories, 15 files

Have a look at the above commands, and compare their output. Which do you like better?
Remember the syntax assumes you are issuing the command from the /mnt/evid directory
(look at your prompt, or use pwd if you don’t know where you are). The find command is
especially powerful for searching for files of a specific date stamp or size (or upper and lower
limits).

You can also use the grep command on any of the lists created by the commands above for
any strings or extensions you want to look for.

barry@forensicbox:evid$ grep -i .jpg ~/analysis/find.filelist.txt

./Pics/C800x600.jpg

200

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

./Pics/bike2.jpg

./Pics/bike3.jpg

./Pics/matrixs3.jpg

This command looks for the pattern .jpg in the list of files, using the filename extension
to alert us to a JPEG file. The -i makes the grep command case insensitive. Once you
get a better handle on grep, you can make your searches far more targeted. For example,
specifying strings at the beginning or end of a line (like file extensions) using ^ or $.
man grep has a whole section on these regular expression terms.

9.3 Making a List of File Types

What if you are looking for JPEGs but the name of the file has been changed, or the extension
is wrong? You can also run the file command on each file and see what it might contain.
As we saw in earlier sections when looking at file systems, the file command compares each
file’s header (the first few bytes of a raw file - or whatever defines a file) with the contents
of the "magic" file. It then outputs a description of the file.

Remember our use of the find command’s -exec option with sha1sum? Let’s do the same
thing with file:

barry@forensicbox:evid$ find . -type f -exec file {} \; >
~/analysis/filetype.txt

This creates a text file with the output of the file command for each file that the find

command returns. The text file is in ~/analysis/filetype.txt. View the resulting list with
cat (or less). The file entries are separated below for readability:

barry@forensicbox:evid$ cat ~/analysis/filetype.txt

./Docs/Benchmarks.xls: Composite Document File V2 Document, Little Endian,

Os: Windows, Version 4.10, Code page: 1252, Author: Barry J. Grundy, Last

Saved By: Barry J. Grundy, Name of Creating Application: Microsoft Excel,

Create Time/Date: Sat Jan 9 19:53:35 1999, Security: 0

./Docs/Computer_Build.xml: gzip compressed data, from Unix, original size 39880

./Docs/Law.doc: Composite Document File V2 Document, Little Endian,

Os: Windows, Version 4.0, Code page: 1252, Title: The Long Arm of the Law,

Author: OAG, Template: Normal.dot, Last Saved By: OAG, Revision Number: 2,

Name of Creating Application: Microsoft Word 8.0, Total Editing Time: 01:00,

Create Time/Date: Thu Sep 21 13:16:00 2000, Last Saved Time/Date:

Thu Sep 21 13:16:00 2000, Number of Pages: 1, Number of Words: 1335,

Number of Characters: 7610, Security: 0

201

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

./Docs/whyhack: ASCII text, with very long lines, with CRLF, LF line terminators

...

If you are looking for images in particular, then use grep to specify that. The following
command would look for the string ’image’ using the grep command on the file
/root/evid/filetype.list

barry@forensicbox:evid$ grep ’image’ ~/analysis/filetype.txt

./Pics/C800x600.jpg: JPEG image data, JFIF standard 1.02, resolution

(DPI), density 80x80, segment length 16, comment: "File written by

Adobe Photoshop 5.0", progressive, precision 8, 800x600, components 3

./Pics/matrixs3.jpg: JPEG image data, JFIF standard 1.01, aspect ratio, density 1x1

↪→ , segment length 16, baseline, precision 8, 483x354, components 3

./Pics/Stoppie.gif: GIF image data, version 87a, 1024 x 693

./ouchy.dat: JPEG image data, JFIF standard 1.02, resolution (DPI),

density 74x74, segment length 16, comment: "File written by Adobe

Photoshop 5.0", baseline, precision 8, 440x297, components 3

The file ouchy.dat does not have the proper extension, but it is still identified as a JPEG
image. Also note that some of the images above do not show up in our grep list because
their descriptions do not contain the word “image”. There are two Windows Bitmap images
that have .jpg extensions that do not end up in the grep list. Be aware of this when using
the file command.

When using grep on this list you are looking for strings in the description, not actual file
types. Pay attention to the difference.

9.4 Viewing Files

For text files, as we’ve covered, you can use cat, more, or less to view the contents.

cat filename

more filename

less filename

Be aware that if the output is not standard text, then you might corrupt the terminal output
(type reset or stty sane at the prompt and it should clear up). Using the file command
will give you a good idea of which files will be view-able and what program might best be

202

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

used to view the contents of a file. For example, Microsoft Office documents can be opened
under Linux using programs like OpenOffice, antiword or docx2txt.

Perhaps a better alternative for viewing unknown files would be to use the strings command.
This command can be used to parse regular ASCII text out of any file. It’s good for formatted
documents, non XML compressed data files (older MS Office files, etc.) and even binaries
(unidentified executable files, for example), which might have interesting text strings hidden
in them. It might be best to pipe the output through less.

Have a look at the mounted image on /mnt/evid. There is a file called ARP.EXE. What does
this file do? We can’t execute it, and from using the file command we know that it’s a
DOS/Windows executable. Run the following command (again, assuming you are in the
/mnt/evid directory) and scroll through the output. Do you find anything of interest (hint:
like a usage message)?

barry@forensicbox:evid$ strings ARP.EXE | less

!This program cannot be run in DOS mode.

.text

’.data

.rsrc

@.reloc

WSOCK32.dll

CRTDLL.dll

KERNEL32.dll

NTDLL.DLLoutput

...

Displays and modifies the IP-to-Physical address translation tables used by

address resolution protocol (ARP).

ARP -s inet_addr eth_addr [if_addr]

ARP -d inet_addr [if_addr]

ARP -a [inet_addr] [-N if_addr]

-a Displays current ARP entries by interrogating the current

protocol data. If inet_addr is specified, the IP and Physical

addresses for only the specified computer are displayed. If

more than one network interface uses ARP, entries for each ARP

table are displayed.

-g Same as -a.

inet_addr Specifies an internet address.

...

Using strings can help us potentially identify the purpose of an executable in some cases.

Viewing images (picture files) from your evidence mount point can be done on the command
line with the display command (assuming you are in an X window session). Have a look
at the ouchy.dat file in the root of your /mnt/evid mount point. We can see it is a picture
file, even though the extension is wrong by using the file command. Without leaving the

203

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

command line, we can view the file using display:

barry@forensicbox:evid$ file ouchy.dat

ouchy.dat: JPEG image data, JFIF standard 1.02, resolution (DPI),

density 74x74, segment length 16, comment: "File written by Adobe

Photoshop 5.0", baseline, precision 8, 440x297, components 3

barry@forensicbox:evid$ display ouchy.dat

Figure 12: Viewing an image with a mis-matched extension

Close the image with your mouse, or use the <ctrl-c> key combo from the command line to
kill the program.

One neat trick you can do if you have a handful of picture files in a directory you want to
view without having to use a separate command for each is to use a bash loop. Scripting
and bash programming are outside the scope of this document (for now), but this is a very
simple loop that illustrates some more powerful command line usage. This can be done all
on one line, but separating the individual commands with the <enter> key makes it a bit
more readable.25

First, let’s cd into the Pics/ directory under /mnt/evid, do a quick ls and see that we have
a small directory with a few picture files (you can check this with file *). We then type
our loop:

barry@forensicbox:evid$ cd Pics

25There are, of course, image viewing programs that let you browse thumbnail images, like ranger, but
we cover this loop for educational purposes

204

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

barry@forensicbox:Pics$ ls

C800x600.jpg* Stoppie.gif* bike2.jpg*
bike3.jpg* matrixs3.jpg* mulewheelie.gif*

barry@forensicbox:Pics$ for pic in ./* <enter>

> do <enter>

> display $pic <enter>

> done <enter>

The first line of a bash loop above means “for every file in the current directory (./*), assign
each file the variable name pic as we move through the loop”. The second line is simply the
bash keyword do. The third line executes display on the value of the pic variable ($pic) at
each iteration of the loop, followed by the bash keyword done to close the loop. As you run
the loop, each image will display (move to the next picture with your space bar - may vary
depending on your system). The loop continues until all the values of \$pic are exhausted
(all the files in the directory) and the loop exits. Learn to do this and I promise you will
find it useful almost daily.

If you are currently running the X window system, you can use any of the graphics tools
that come standard with whichever Linux distribution you are using. geeqie is one graphics
tool for the XFCE desktop that will display graphic files in a directory. Experiment a little.
Other tools, such as gthumb for Gnome and Konqueror from the KDE desktop have a feature
that will create a very nice html image gallery for you from all images in a directory.

Once you are finished exploring, be sure to unmount the loop mounted disk image. Again,
make sure you are not anywhere in the mount point (using that directory in another terminal
session) when you try to unmount, or you will get the “busy” error. The following commands
will take you back to your home directory (cd without arguments takes you to your home
directory automagically). We su to root, and unmount the loop mounted file system.

barry@forensicbox:Pics$ cd

barry@forensicbox:~$ su -

Password:

root@forensicbox:~# umount /mnt/evid

root@forensicbox:~# exit

barry@forensicbox:~$

205

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

9.5 Searching All Areas of the Forensic Image for Text

Now let’s go back to the original image. The loop mounted disk image allowed you to check
all the files and directories using a logical view of the file system. What about unallocated
and slack space (physical view)? We will now analyze the image itself, since it was a bit
for bit copy and includes data in the unallocated areas of the disk. We’ll do this using
rudimentary Linux tools.

Let’s assume that we have seized this image from media used by a former employee of a large
corporation. The would-be cracker sent a letter to the corporation threatening to unleash
a virus in their network. The suspect denies sending the letter. This is a simple matter of
finding the text from a deleted file (unallocated space).

First, change back to the directory where you saved the image file fat_fs.raw. In this case,
the file is in the home directory (which you can see is the present working directory by both
the ~ in the prompt, and the output of the pwd command).

barry@forensicbox:~$ pwd

/home/barry

barry@forensicbox:~$ ls

Desktop/ Downloads/ analysis/ fat_fs.raw*

Now we will use the grep command to search the image for any instance of an expression
or pattern. We will use a number of options to make the output of grep more useful. The
syntax of grep is normally:

grep [-options] <pattern> <file-to-search>

The first thing we will do is create a list of keywords to search for. It’s rare we ever want to
search evidence for a single keyword, after all. For our example, lets use "ransom", "$50,000",
and "unleash a virus". These are some keywords and a phrase that we have decided to use
from the original letter received by the fictitious corporation. Make the list of keywords
(using vi of course!) and save it as ~/analysis/searchlist.txt. Ensure that each string you
want to search for is on a different line.

$50,000

ransom

unleash a virus

Make sure there are NO BLANK LINES IN THE LIST OR AT THE END OF THE LIST!!
Now we run the grep command on our image:

206

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

barry@forensicbox:~$ grep -abif analysis/searchlist.txt fat_fs.raw >
analysis/hits.txt

We are asking grep to use the list we created in ./analysis/searchlist.txt for the patterns
we are looking for. This is specified with the -f <file> option. We are telling grep to
search fat_fs.raw for these patterns, and redirect the output to a file called hits.txt in
the ./analysis directory, so we can record the output. The -a option tells grep to process
the file as if it were text, even if it’s binary. The option -i tells grep to ignore upper and
lower case. And the -b option tells grep to give us the byte offset of each hit so we can find
the line in xxd (our command line hex viewer). Earlier we mentioned the grep manual page
and the section it has on regular expressions. Please take the time to read through it and
experiment.

Once you run the command above, you should have a new file in your analysis directory
called hits.txt. View this file with less or any text viewer. Keep in mind that strings

might be best for the job. Again, if you use less, you run the risk of corrupting your terminal
if there are non-ASCII characters. We will simply use cat to stream the entire contents of
the file to the standard output. The file hits.txt should give you a list of lines that contain
the words in your searchlist.txt file. In front of each line is a number that represents the
byte offset for that “hit” in the image file. For illustration purposes, the search terms are
underlined, and the byte offsets are bold in the output below:

barry@forensicbox:~$ cat analysis/hits.txt

75441:you and your entire business ransom.

75500:I have had enough of your mindless corporate piracy and will

no longer stand for it. You will recieve another letter next week. It will have

a single bank account number and bank name. I want you to deposit $50,000

in the account the day you receive the letter.

75767:Don’t try anything, and dont contact the cops. If you do,

I will unleash a virus that will bring down your whole network and destroy

your consumer’s confidence.

In keeping with our command line philosophy, we will use xxd to display the data found at
each byte offset. xxd is a command line hex dump tool, useful for examining files. Do this
for each offset in the list of hits. The -s option to xxd is so we can "seek" into the file the
specified number of bytes. This should yield some interesting results if you scroll above and
below the offsets. Here we’ll use xxd and seek to the first hit at byte offset 75441 with the
-s option. We’ll pipe the output to the head command, which will show us the first 10 lines
of output. You can view more of the output by piping through less instead.

barry@forensicbox:~$ xxd -s 75441 fat_fs.raw | head

000126b1: 796f 7520 616e 6420 796f 7572 2065 6e74 you and your ent

000126c1: 6972 6520 6275 7369 6e65 7373 2072 616e ire business ran

000126d1: 736f 6d2e 0a0a 5468 6973 2069 7320 6e6f som...This is no

207

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

000126e1: 7420 6120 6a6f 6b65 2e0a 0a49 2068 6176 t a joke...I hav

000126f1: 6520 6861 6420 656e 6f75 6768 206f 6620 e had enough of

00012701: 796f 7572 206d 696e 646c 6573 7320 636f your mindless co

00012711: 7270 6f72 6174 6520 7069 7261 6379 2061 rporate piracy a

00012721: 6e64 2077 696c 6c20 6e6f 206c 6f6e 6765 nd will no longe

00012731: 7220 7374 616e 6420 666f 7220 6974 2e20 r stand for it.

00012741: 596f 7520 7769 6c6c 2072 6563 6965 7665 You will recieve

Please note that the use of grep in this manner is fairly limited. There are character sets
that the common versions of grep (and strings as well) do not support. So doing a physical
search for a string on an image file is really only useful for what it does show you. In other
words, negative results for a grep search of an image can be misleading. The strings or
keywords may exist in the image in a form not recognizable to grep or strings. There are
tools and methods that address this, and we will discuss some of them later.

In addition to the structure of the images and the issues of image sizes, we also have to
be concerned with memory usage and our tools. You might find that grep, when used as
illustrated in small image analysis example, might not work as expected with larger images
and could exit with an error similar to:

grep: memory exhausted

The most apparent cause for this is that grep does its searches line by line. When you are
“grepping” a large disk image terabytes in size, you might find that you have a huge number
of bytes to read through before grep comes across a newline character. What if grep had
to read several gigabytes of data before coming across a newline? It would “exhaust” itself
(the input buffer fills up). There are many variables that will affect this, and the causes are
actually far more complex.

One potential solution is to force-feed grep some newlines. In our example analysis we are
“grepping” for text. We are not concerned with non-text characters at all. If we could take
the input stream to grep and change the non-text characters to newlines, in most cases grep

would have no problem. Note that changing the input stream to grep does not change the
image itself. Also, remember that we are still looking for a byte offset. Luckily, the character
sizes remain the same, and so the offset does not change as we feed newlines into the stream
(simply replacing one character with another).

Let’s say we want to take all of the control characters streaming into grep from the disk
image and change them to newlines. We can use the translate command, tr, to accomplish
this. Check out man tr for more information about this powerful command:

barry@forensicbox:~$ tr ’[:cntrl:]’ ’\n’ < fat_fs.raw | grep -abif
analysis/searchlist.txt

75441:you and your entire business ransom.

75500:I have had enough of your mindless corporate piracy and will

no longer stand for it. You will recieve another letter next week.

208

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

It will have a single bank account number and bank name. I want you

to deposit $50,000 in the account the day you receive the letter.

75767:Don’t try anything, and dont contact the cops. If you do, I will

unleash a virus that will bring down your whole network and destroy

your consumer’s confidence.

This command would read: "Translate all the characters contained in the set of control
characters [:cntrl:] to newlines \n. Take the input to tr from fat_fs.raw (we are re-
directing in the opposite direction this time) and pipe the output to grep, and then to head.
This effectively changes the stream before it gets to grep. Notice the output does not change.
The translation occurs in the stream, and it’s a character for character swap.

This is only one of many possible problems you could come across. The point here is that
when issues such as these arise, you need to be familiar enough with the tools provided to be
able to understand why such errors might have been produced, and how you can get around
them. Remember, the shell tools and the GNU software that accompany a Linux distribution
are extremely powerful, and are capable of tackling nearly any task. Where the standard
shell fails, you might look at Perl or Python as options. These subjects are outside of the
scope of the current presentation, but are introduced as fodder for further experimentation.

Be sure to unmount the image when you are finished:

barry@forensicbox:~$ su -

Password:

root@forensicbox:~# umount /mnt/evid

root@forensicbox:~# exit

barry@forensicbox:~$

209

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

10 Advanced (Beginner) Forensics

The following sections are more advanced and detailed. New tools are introduced to help
round out some of your knowledge and provide a more solid footing on the capabilities of
the GNU/Linux command line. The topics are still at the beginner level, but you should
be at least somewhat comfortable with the commands demonstrated here before tackling
the exercises. Although I’ve included the commands and much of the output for those who
are reading this without the benefit of a Linux computer at hand, it is important that
you follow along on your own system as we go through the practical exercises. Hands on
experimentation is the best way to learn.

10.1 Manipulating and Parsing Files

Let’s dig a little deeper into the command line. Often there are arguments made about the
usefulness of the command line interface (CLI) versus a GUI tool for analysis. I would argue
that in the case of large sets of structured data, the CLI can be faster and more flexible than
many GUI tools available today when it comes to parsing.

As an example, we will look at a set of log files from a single Unix system. We are not going
to analyze them for any sort of evidentiary data. The point here is to illustrate the ability
of commands through the CLI to organize and parse data by using pipes to string a series of
commands together and obtain the desired output. Follow along with the example, and keep
in mind that to get anywhere near proficient with this will require a great deal of reading
and practice. The payoff is enormous.

Create a directory called Logs and download the file logs.v3.tar.gz into that directory:

barry@forensicbox:~$ mkdir Logs

barry@forensicbox:~$ cd Logs

barry@forensicbox:Logs$ wget https://www.linuxleo.com/Files/logs.v3.tar.gz

--2019-07-22 08:53:46-- https://www.linuxleo.com/Files/logs.v3.tar.gz

Resolving www.linuxleo.com... 74.208.236.144

Connecting to www.linuxleo.com|74.208.236.144|:443... connected.

HTTP request sent, awaiting response... 200 OK

Length: 5144 (5.0K) [application/gzip]

Saving to: ’logs.v3.tar.gz’

logs.v3.tar.gz 100%[======================>] 5.02K --.-KB/s in 0s

2019-07-22 08:53:47 (1.15 GB/s) - ’logs.v3.tar.gz’ saved [5144/5144]

210

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

Once the file is downloaded, check the hash and use the tar command to list the contents.
Our command below shows that the files in the archive will extract directly to our current
directory. There are 5 messages logs.

barry@forensicbox:Logs$ sha1sum logs.v3.tar.gz

a66bc61628af6eab8cef780e4c3f60edcedbcf12 logs.v3.tar.gz

barry@forensicbox:Logs$ tar tzvflogs.v3.tar.gz

-rw-r--r-- root/root 8282 2003-10-29 12:45 messages

-rw------- root/root 8302 2003-10-29 16:17 messages.1

-rw------- root/root 8293 2003-10-29 16:19 messages.2

-rw------- root/root 4694 2003-10-29 16:23 messages.3

-rw------- root/root 1215 2003-10-29 16:23 messages.4

The messages logs contain entries from a variety of sources, including the kernel and other
applications. The numbered files result from log rotation. As the logs are filled, they are
rotated and eventually deleted. On most Unix systems, the logs are found in /var/log/ or
/var/adm. These are from a very old system, but again it’s not the contents we are interested
in here, it’s using the tools.

Extract the logs:

barry@forensicbox: Logs$ tar xzvf logs.v3.tar.gz

messages

messages.1

messages.2

messages.3

messages.4

Instead of listing the contents with the t option, we are extracting it with the x option. All
the other options remain the same.

Let’s have a look at one log entry. We pipe the output of cat to the command head -n 1

so that we only get the 1st line (recall that head without additional arguments will give the
first 10 lines):

barry@forensicbox:Logs$ cat messages | head -n 1

Nov 17 04:02:14 hostname123 syslogd 1.4.1: restart.

Each line in the log files begin with a date and time stamp. Next comes the host name
followed by the name of the application that generated the log message. Finally, the actual
message is printed.

For the sake of our exercise, let’s assume these logs are from a victim system, and we want
to analyze them and parse out the useful information. We are not going to worry about

211

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

what we are actually seeing here (there’s nothing nefarious in these logs), our objective is to
understand how to boil the information down to something useful.

First of all, rather than parsing each file individually, let’s try and analyze all the logs at one
time. They are all in the same format, and essentially they comprise one large log. We can
use the cat command to add all the files together and send them to standard output. If we
work on that data stream, then we are essentially making one large log out of all five logs.
Can you see a potential problem with this?

barry@forensicbox:Logs$ cat messages*| less

Nov 17 04:02:14 hostname123 syslogd 1.4.1: restart.

Nov 17 04:05:46 hostname123 su(pam_unix)[19307]: session opened for user news

Nov 17 04:05:47 hostname123 su(pam_unix)[19307]: session closed for user news

...

Nov 23 18:27:58 hostname123 kernel: hda: hda1 hda2 hda3 hda4 < hda5 hda6 hda7 >

Nov 23 18:27:00 hostname123 rc.sysinit: Mounting proc filesystem: succeeded

Nov 10 04:02:08 hostname123 syslogd 1.4.1: restart.

Nov 10 04:05:55 hostname123 su(pam_unix)[15181]: session opened for user news

Nov 10 04:05:55 hostname123 su(pam_unix)[15181]: session closed for user news

Nov 11 04:06:09 hostname123 su(pam_unix)[32640]: session opened for user news

...

If you look at the output (scroll using less), you will see that the dates ascend and then
jump to an earlier date and then start to ascend again. This is because the later log entries
are added to the bottom of each file, so as the files are added together, the dates appear to
be out of order. What we really want to do is stream each file backwards so that they get
added together with the most recent date in each file at the top instead of at the bottom.
In this way, when the files are added together they are in order. In order to accomplish this,
we use tac (yes, that’s cat backwards).

barry@forensicbox:Logs$ tac messages*| less

Nov 23 18:27:00 hostname123 rc.sysinit: Mounting proc filesystem: succeeded

Nov 23 18:27:58 hostname123 kernel: hda: hda1 hda2 hda3 hda4 < hda5 hda6 hda7 >

Nov 23 18:27:58 hostname123 kernel: Partition check:

Nov 23 18:27:58 hostname123 kernel: ide-floppy driver 0.99.newide

...

Beautiful. The dates are now in order. We can now work on the stream of log entries as
if they were one large (in order) file. We will continue to work with this tac command to
create our in-order stream with each command. We could redirect to another single log file
that contains all the logs, but there’s no need to right now and creating one large log file
serves no real purpose.

First, let’s gather some information. We might want to know, perhaps for our notes, how
many entries are in each file, and how many entries total. Here’s a quick way of doing that

212

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

from the command line:

barry@forensicbox:Logs$ tac messages*| wc -l

374

The same command is used to stream all the files together and send the output through the
pipe to the wc command ("word count"). The -l option specifies that we want to count just
lines instead of the default output of lines, words and bytes. To get a count for all the files
and the total at the same time, use wc -l on all the messages files at one time:

barry@forensicbox:Logs$ wc -l messages*
100 messages

109 messages.1

100 messages.2

50 messages.3

15 messages.4

374 total

Now we will introduce a new command, awk to help us view specific fields from the log
entries. In this case we will view the dates. awk is an extremely powerful command. The
version most often found on Linux systems is gawk (GNU awk). While we are going to use
it as a stand-alone command, awk is actually a programming language on its own, and can
be used to write scripts for organizing data. Our concentration will be centered on the awk

print function. See man awk for more details.

Sets of repetitive data can often be divided into columns or "fields", depending on the
structure of the file. In this case, the fields in the log files are separated by simple white
space (the awk default field separator). The date is comprised of the first two fields (month
and day). So let’s have a look at awk in action:

barry@forensicbox:Logs$ tac messages*| awk ’{print $1" "$2}’ | less

Nov 23

Nov 23

Nov 23

...

Oct 20

Oct 20

Oct 20

...

This command will stream all the log files (each one from bottom to top) and send the
output to awk which will print the first field, $1 (month), followed by a space (" "), followed
by the second field, $2 (day). This shows just the month and day for every entry. Suppose
I just want to see one of each date when an entry was made. I don’t need to see repeating
dates. I ask to see one of each unique line of output with uniq:

213

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

barry@forensicbox:Logs$ tac messages*| awk ’{print $1" "$2}’ | uniq | less

Nov 23

Nov 22

Nov 21

...

Oct 22

Oct 21

Oct 20

This removes repeated dates, and shows me just those dates with log activity.

CLI Hint: Instead of re-typing the command each time, use the up arrow on your keyboard
to scroll through older commands (part of the command history of bash). Hit the up arrow
once, and you can edit your last command. Very useful when adjusting commands for this
sort of parsing.

If a particular date is of interest, I can grep the logs for that particular date (note there are
2 spaces between Nov and 4, one space will not work in our grep command):

barry@forensicbox:Logs$ tac messages*| grep "Nov 4"

Nov 4 17:41:27 hostname123 sshd(pam_unix)[27630]: session closed for user root

Nov 4 17:41:27 hostname123 sshd[27630]: Received disconnect from 1xx.183.221.214:

↪→ 11: Disconnect requested by Windows SSH Client.

Nov 4 17:13:07 hostname123 sshd(pam_unix)[27630]: session opened for user root by

↪→ (uid=0)

Nov 4 17:13:07 hostname123 sshd[27630]: Accepted password for root from 1xx

↪→ .183.221.214 port 1762 ssh2

Nov 4 17:08:23 hostname123 sshd(pam_unix)[27479]: session closed for user root

...

Of course, we have to keep in mind that this would give us any lines where the string Nov 4

resided, not just in the date field. To be more explicit, we could say that we only want lines
that start with Nov 4, using the ^ (in our case, this gives essentially the same output):

barry@forensicbox:Logs$ tac messages*| grep ^"Nov 4" | less

Nov 4 17:41:27 hostname123 sshd(pam_unix)[27630]: session closed for user root

Nov 4 17:41:27 hostname123 sshd[27630]: Received disconnect from 1xx.183.221.214:

↪→ 11: Disconnect requested by Windows SSH Client.

Nov 4 17:13:07 hostname123 sshd(pam_unix)[27630]: session opened for user root by

↪→ (uid=0)

Nov 4 17:13:07 hostname123 sshd[27630]: Accepted password for root from 1xx

↪→ .183.221.214 port 1762 ssh2

Nov 4 17:08:23 hostname123 sshd(pam_unix)[27479]: session closed for user root

...

214

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

Also, if we don’t know that there are two spaces between Nov and 4, we can tell grep to look
for any number of spaces between the two:

barry@forensicbox:Logs$ tac messages*| grep ^"Nov[]*4" | less

Nov 4 17:41:27 hostname123 sshd(pam_unix)[27630]: session closed for user root

Nov 4 17:41:27 hostname123 sshd[27630]: Received disconnect from 1xx.183.221.214:

↪→ 11: Disconnect requested by Windows SSH Client.

...

The above grep expression translates to "Lines starting (^) with the string Nov followed by
zero or more (*) of the preceding characters that are between the brackets ([] - in this case,
a space) followed by a 4". Obviously, this is a complex issue. Knowing how to use regular
expression will give you huge flexibility in sorting through and organizing large sets of data.
As mentioned earlier, read man grep for a good primer on regular expressions.

As we look through the log files, we may come across entries that appear suspect. Perhaps
we need to gather all the entries that we see containing the string
Did not receive identification string from <IP> for further analysis.

barry@forensicbox:Logs$ tac messages*| grep "identification string"

Nov 22 23:48:47 hostname123 sshd[19380]: Did not receive identification string from

↪→ 19x.xx9.220.35

Nov 22 23:48:47 hostname123 sshd[19379]: Did not receive identification string from

↪→ 19x.xx9.220.35

Nov 20 14:13:11 hostname123 sshd[29854]: Did not receive identification string from

↪→ 200.xx.114.131

...

How many of these entries are there?

barry@forensicbox:Logs$ tac messages*| grep "identification string" | wc -l

35

There are 35 such entries. Now we just want the date (fields 1 and 2), the time (field 3) and
the remote IP address that generated the log entry. The IP address is the last field. Rather
than count each word in the entry to get to the field number of the IP, we can simply use the
variable $NF, which means "number of fields". Since the IP is the last field, its field number
is equal to the number of fields:

barry@forensicbox:Logs$ tac messages*| grep "identification string" | awk
’{print $1" "$2" "$3" "$NF}’

Nov 22 23:48:47 19x.xx9.220.35

Nov 22 23:48:47 19x.xx9.220.35

Nov 20 14:13:11 200.xx.114.131

215

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

Nov 18 18:55:06 6x.x2.248.243

...

We can add some tabs (\t) in place of spaces in our awk command to make the output
more readable (this assumes fixed string length). The following command will place a tab
character between the date and the time, and between the time and the IP address:

barry@forensicbox:Logs$ tac messages*| grep "identification string" | awk
’{print $1" "$2"\t"$3"\t"$NF}’

Nov 22 23:48:47 19x.xx9.220.35

Nov 22 23:48:47 19x.xx9.220.35

Nov 20 14:13:11 200.xx.114.131

Nov 18 18:55:06 6x.x2.248.243

...

This can all be redirected to an analysis log or text file for easy addition to a report. Re-
member that > report.txt creates the report file (overwriting anything there previously),
while >> report.txt appends to it. You can use su to become root and set the "append
only" attribute on you report file to prevent accidental overwrites26.

The following commands are typed on one line each:

barry@forensicbox:Logs$ echo "Localhost123: Log entries from /var/log/messages"
> report.txt

barry@forensicbox:Logs$ echo"\"Did not receive identification string\":" >>
report.txt

barry@forensicbox:Logs$ tac messages*| grep "identification string" | awk
’{print $1" "$2"\t"$3"\t"$NF}’ >> report.txt

barry@forensicbox:Logs$ cat report.txt

Localhost123: Log entries from /var/log/messages "Did not receive identification

↪→ string":

Nov 22 23:48:47 19x.xx9.220.35

Nov 22 23:48:47 19x.xx9.220.35

Nov 20 14:13:11 200.xx.114.131

Nov 18 18:55:06 6x.x2.248.243

Nov 17 19:26:43 200.xx.72.129

...

We can also get a sorted (sort) list of the unique (-u) IP addresses involved in the same
way:

26We covered this earlier in the guide with the chattr command.

216

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

barry@forensicbox:Logs$ echo "Unique IP addresses: " >> report.txt

barry@forensicbox:Logs$ tac messages*| grep "identification string" | awk
’{print $NF}’ >> report.txt

barry@forensicbox:Logs$ cat report.txt

Localhost123: Log entries from /var/log/messages

"Did not receive identification string":

Nov 22 23:48:47 19x.xx9.220.35

Nov 22 23:48:47 19x.xx9.220.35

...

Unique IP addresses:

19x.xx9.220.35

200.xx.114.131

200.xx.72.129

212.xx.13.130

2xx.54.67.197

2xx.71.188.192

2xx.x48.210.129

6x.x2.248.243

6x.x44.180.27

xx.192.39.131

The command above prints only the last field ($NF) of our grep output (which is the IP
address). The resulting list of IP addresses can also be fed to a script that does nslookup or
whois database queries.

You can view the resulting report (report.txt) using the less command.

As with all the exercises in this document, we have just sampled the abilities of the Linux
command line. It all seems somewhat convoluted to the beginner. After some practice and
experience with different sets of data, you will find that you can glance at a file and say
“I want that information”, and be able to write a quick piped command to get what you
want in a readable format in a matter of seconds. As with all language skills, the Linux
command line “language” (actually bash in this case) is perishable. Keep a good reference
handy and remember that you might have to look up syntax a few times before it becomes
second nature.

10.2 Fun with dd

We’ve already done some simple imaging and wiping using dd, let’s explore some other uses
for this flexible tool. dd is sort of like a little forensic Swiss army knife. It has lots of
applications, limited only by your imagination.

217

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

10.2.1 Data Carving with dd

In this next example, we will use dd to carve a JPEG picture file from a chunk of raw data.
By itself, this is not a real useful exercise. There are lots of tools out there that will "carve"
files from forensic images, including a simple cut and paste from a hex editor. The purpose of
this exercise is to help you become more familiar with dd. In addition, you will get a chance
to use a number of other tools in preparation for the "carving". This will help familiarize
you further with the Linux toolbox. First you will need to download the raw data chunk
and check it’s hash:

barry@forensicbox:~$ wget https://www.linuxleo.com/Files/image_carve_2017.raw

...

barry@forensicbox:~$ sha1sum image_carve_2017.raw

ac3dd14e9a84f8dc5b827ba6262c295d28d3cecc image_carve_2017.raw

Have a brief look at the file image_carve_2017.raw with your wonderful command line hex-
dump tool, xxd:

barry@forensicbox:~$ xxd image_carve_2017.raw | less

00000000: f0d5 0291 431e 41db 5fb9 abce 7240 4543C.A._...r@EC

00000010: 9a71 389a e0f1 4cf7 bfb4 32e2 6fe9 1132 .q8...L...2.o..2

00000020: fc36 ddca eb48 56c1 1501 bcfd e7dd 2631 .6...HV.......&1

00000030: ffa6 bc3e e7bc ddd4 e986 f222 7198 11a9 ...>......."q...

00000040: ee92 a2a1 56c2 22fc 9838 dff4 5d24 8a56V."..8..]$.V

00000050: da3d 0a2c a91c e2dd 5095 40fd e43a 1208 .=.,....P.@..:..

00000060: a76d 997e 9daf f4fa 9218 a2e4 6d81 a8ca .m.~........m...

00000070: cdf2 5055 12d5 f703 44bd 8d8b 88ed abab ..PU....D.......

00000080: 9023 ee54 f4f4 77f5 c89e ffdc 7c1a dba3 .#.T..w.....|...

00000090: 42c7 9f07 902e 08c9 778c 67e3 479b 70f4 B.......w.g.G.p.

...

It’s really just a file full of random characters. Somewhere inside there is a standard JPEG
image. Let’s go through the steps needed to recover the picture file using dd and other
Linux tools. We are going to stick with command line tools available in most default Linux
installations.

First we need a plan. How would we go about recovering the file? What are the things we
need to know to get the image (picture) out, and only the image? Imagine dd as a pair of
scissors. We need to know where to put the scissors to start cutting, and we need to know
where to stop cutting. Finding the start of the JPEG and the end of the JPEG can tell us
this. Once we know where we will start and stop, we can calculate the size of the JPEG. We
can then tell dd where to start cutting, and how much to cut. The output file will be our
JPEG image. Easy, right? So here’s our plan, and the tools we’ll use:

218

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

1. Find the start of the JPEG (xxd and grep)

2. Find the end of the JPEG (xxd and grep)

3. Calculate the size of the JPEG in bytes (bc)

4. Cut from the calculated start - the calculated number of bytes and output to a file (dd)

This exercise starts with the assumption that we are familiar with standard file headers.
Since we will be searching for a standard JPEG image within the data chunk, we will start
with the stipulation that the JPEG header begins with 0xffd8 (the hexadecimal value ffd8)
with a six-byte offset to the string JFIF. The end of the standard JPEG is marked by hex
ffd9.

Let’s go ahead with step 1: Using xxd, we pipe the output of our image_carve.raw file to
grep and look for the start of the JPEG27:

barry@forensicbox:~$ xxd image_carve_2017.raw | grep ffd8

0000f900: 901d cfe7 8488 ac23 ffd8 24ab 4f4d 1613#..$.OM..

0001bba0: e798 a4b6 d833 9567 af5f ffd8 e5e9 ed243.g._.....$

00033080: 84a5 aeec d7db ffd8 3c37 c52d a80e 6e7e<7.-..n~

00036ac0: 1676 761b e3d4 ffd8 ffe0 0010 4a46 4946 .vv.........JFIF

The grep command found four lines that contain the potential header of our picture file. We
know that we are looking for a JPEG image, and we know that following an additional four
bytes after the 0xffd8 we should see the JFIF string. The last line of our output shows that,
meaning this is the correct match. This is shown in red above.

The start of a standard JPEG file header has been found. The offset (in hex) for the
beginning of this line of xxd output is 0x00036ac0. Now we can calculate the byte offset in
decimal. For this we will use the bc command. As we discussed in an earlier section, bc is
a command line "calculator", useful for conversions and calculations. It can be used either
interactively or take piped input. In this case we will echo the hex offset to bc, first telling
it that the value is in base 16. bc will return the decimal value.

barry@forensicbox:~$ echo "ibase=16;36AC0" | bc

223936

It’s important that you use uppercase letters in the hex value. This is NOT the start of
the JPEG, just the start of the line in the xxd output. The ffd8 string is actually located
another six bytes farther into that line of output (each hex pair is a character value, and

27The perceptive among you will notice that this is a "perfect world" situation. There are a number
of variables that can make this operation more difficult. The grep command can be adjusted for many
situations using a complex regular expression (outside the scope of this document).

219

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

there are six pairs before the ffd8). So we add 6 to the start of the line. Our offset is now
223942. We have found and calculated the start of the JPEG image in our data chunk.

00036ac0: 16 76 76 1b e3 d4 ffd8 ...

(223936) +1 +2 +3 +4 +5 +6 = 223942 offset to the header start

Now it’s time to find the end of the file.

Since we already know where the JPEG starts, we will start our search for the end of the file
from that point. Again using xxd and grep we search for the footer value 0xffd9 somewhere
after the header:

barry@forensicbox:~$ xxd -s 223942 image_carve_2017.raw | grep ffd9

0005d3c6: af29 6ae7 06e1 2e48 38a3 ffd9 8303 a138 .)j....H8......8

The -s 223942 option to xxd specifies where to start searching (since we know this value is
the start of the JPEG header, there’s no reason to search before it and we eliminate false hits
from that region). The output shows the first 0xffd9 on the line at hex offset 0x0005d3c6.
Let’s convert that to decimal, again noting the uppercase value in our hex:

barry@forensicbox:~$ echo "ibase=16;0005D3C6" | bc

381894

Because 381894 is the offset for the start of the line, we need to add 12 to the value to include
the 0xffd9 (giving us 381906). We do this because the 0xffd9 needs to be included in our
carve, so we skip past it.

0005d3c6: af 29 6a e7 06 e1 2e 48 38 a3 ff d9

(381894) +1 +2 +3 +4 +5 +6 +7 +8 +9 +10 +11 +12 = 381906 offset to header end

Now that we know the start and the end of the file, we can calculate the size:

barry@forensicbox:~$ echo "381906-223942" | bc

157964

We now know the file is 157964 bytes in size, and it starts at byte offset 223942. The carving
is the easy part! We will use dd with three options:

skip= how far into the data chuck we begin “cutting”. bs= (block size) the number of bytes
we include as a “block”. count= the number of blocks we will be “cutting”.

The input file for the dd command is image_carve_2017.raw. Obviously, the value of skip

will be the offset to the start of the JPEG. The easiest way to handle the block size is to

220

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

specify it as bs=1 (meaning one byte) and then setting count to the size of the file. The name
of the output file is arbitrary.

barry@forensicbox:~$ dd if=image_carve_2017.raw of=carved.jpg bs=1 skip=223942
count=157964

157964+0 records in

157964+0 records out

157964 bytes (158 kB, 154 KiB) copied, 0.174065 s, 908 kB/s

You should now have a file in your current directory called carved.jpg. From the terminal
(assuming you are in a GUI environment)28, simply use the xv command to view the file (or
any other image viewer, like display) and see what you’ve got.

barry@forensicbox:~$ xv carved.jpg

10.2.2 Carving Partitions with dd

Now we can try another useful exercise in carving with dd. At times you might find it
desirable to separate partitions within a disk image. Remember, you cannot simply mount
an entire disk image, only the partitions. We’ve already learned that we can find the structure
of an image and mount the partitions within using tools like losetup -P and the resulting
loop device with the mount command.

We introduce this technique here not to teach it for practical use (though it may have some
limited practical use), but to provide another practical exercise using a number of important
command line tools. In any event, for the beginning Linux forensics student, I would still
consider this an important skill. It’s just good practice for a number of common and useful
commands.

The method we will use in this exercise entails identifying the partitions within a raw image
with fdisk or gdisk. We will then use dd to carve the partitions out of the image.

We will use the same disk image we used previously (able_3.00*). If you have not downloaded
it already, do so now using wget. Then check the hash of the downloaded file. It should
match mine here:

barry@forensicbox:~$ wget https://www.linuxleo.com/Files/able_3.tar.gz

...

barry@forensicbox:~$ sha1sum able_3.tar.gz

6d8de5017336028d3c221678b483a81e341a9220 able_3.tar.gz

28If you are at a console without a GUI, you can use a program like fbi

221

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

Check the contents of the tar archive (tar tzvf), untar the files (tar xzvf), and change into
the able_3 directory with cd. You can skip all of this if you already have the able_3 directory
from our previous exercise. Just change into the directory.

barry@forensicbox:~$ tar tzvf able_3.tar.gz

drwxr-xr-x barry/users 0 2017-05-25 12:42 able_3/

-rw-r--r-- barry/users 1073741824 2017-05-25 12:13 able_3/able_3.000

-rw-r--r-- barry/users 1073741824 2017-05-25 12:13 able_3/able_3.001

-rw-r--r-- barry/users 1339 2017-05-25 12:14 able_3/able_3.log

-rw-r--r-- barry/users 1073741824 2017-05-25 12:14 able_3/able_3.003

-rw-r--r-- barry/users 1073741824 2017-05-25 12:14 able_3/able_3.002

barry@forensicbox:~$ tar xzvf able_tar.gz

able_3/

able_3/able_3.000

able_3/able_3.001

able_3/able_3.log

able_3/able_3.003

able_3/able_3.002

barry@forensicbox:~$ cd able_3

Now that we are in the able_3 directory, we can see that we have our 4 split image files
and a log file with the acquisition information. This particular log was created by the dc3dd

command (we covered earlier). View the log and look at the hashes:

barry@forensicbox:able_3$ cat able_3.log

dc3dd 7.2.646 started at 2017-05-25 15:51:04 +0000

compiled options:

command line: dc3dd if=/dev/sda hofs=able_3.000 ofsz=1G hash=sha1 log=able_3.log

device size: 8388608 sectors (probed), 4,294,967,296 bytes

sector size: 512 bytes (probed)

4294967296 bytes (4 G) copied (100%), 1037.42 s, 3.9 M/s

4294967296 bytes (4 G) hashed (100%), 506.481 s, 8.1 M/s

input results for device ‘/dev/sda’:

8388608 sectors in

0 bad sectors replaced by zeros

2eddbfe3d00cc7376172ec320df88f61afda3502 (sha1)

4ef834ce95ec545722370ace5a5738865d45df9e, sectors 0 - 2097151

ca848143cca181b112b82c3d20acde6bdaf37506, sectors 2097152 - 4194303

3d63f2724304205b6f7fe5cadcbc39c05f18cf30, sectors 4194304 - 6291455

9e8607df22e24750df7d35549d205c3bd69adfe3, sectors 6291456 - 8388607

output results for files ‘able_3.000’:

8388608 sectors out

222

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

[ok] 2eddbfe3d00cc7376172ec320df88f61afda3502 (sha1)

[ok] 4ef834ce95ec545722370ace5a5738865d45df9e, sectors 0 - 2097151, ‘able_3

↪→ .000’

[ok] ca848143cca181b112b82c3d20acde6bdaf37506, sectors 2097152 - 4194303, ‘

↪→ able_3.001’

[ok] 3d63f2724304205b6f7fe5cadcbc39c05f18cf30, sectors 4194304 - 6291455, ‘

↪→ able_3.002’

[ok] 9e8607df22e24750df7d35549d205c3bd69adfe3, sectors 6291456 - 8388607, ‘

↪→ able_3.003’

dc3dd completed at 2017-05-25 16:08:22 +0000

The first hash in the output above is the entire input hash for the device that was imaged
(/dev/sda1 from the subject system). We can verify that by streaming all our split parts
together and piping through sha1sum:

barry@forensicbox:able_3$ cat able_3.0*| sha1sum

2eddbfe3d00cc7376172ec320df88f61afda3502 -

The next four hashes are for the split image files (and the sector range in each split). We
could also verify these individually, although if the previous command works, we’ve already
confirmed our individual hashes will match. Go ahead and check them anyway:

barry@forensicbox:able_3$ sha1sum able_3.0*
4ef834ce95ec545722370ace5a5738865d45df9e able_3.000

ca848143cca181b112b82c3d20acde6bdaf37506 able_3.001

3d63f2724304205b6f7fe5cadcbc39c05f18cf30 able_3.002

9e8607df22e24750df7d35549d205c3bd69adfe3 able_3.003

We can see they match the hashes in the log file.

Okay, now we have our image, and we have verified that it is an accurate copy. In order
to check the file system and carve the partitions, we’ll need to work on a single raw image
instead of splits. Working from the assumption that we are executing this on a system with
basic tools, we’ll forgo using tools like affuse and losetup. Instead, we’ll simply recreate a
raw image by using cat to add the files back together and re-direct to the raw image:

barry@forensicbox:able_3$ cat able_3.0*> able_3.raw

And now we will work on the able_3.raw image.

Let’s start by exploring the contents of the image with some of our partition parsing tools.
To use these tools, you’ll need to be root (or use sudo) and change to the directory where
the images are (user’s home directory and able_3 sub directory):

223

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

barry@forensicbox:able_3$ su -

Password:

root@forensicbox:~# cd /home/barry/able_3

root@forensicbox:able_3#

Starting with fdisk:

root@forensicbox:able_3# fdisk -l able_3.raw

Disk able_3.raw: 4 GiB, 4294967296 bytes, 8388608 sectors

Units: sectors of 1 * 512 = 512 bytes

Sector size (logical/physical): 512 bytes / 512 bytes

I/O size (minimum/optimal): 512 bytes / 512 bytes

Disklabel type: gpt

Disk identifier: B94F8C48-CE81-43F4-A062-AA2E55C2C833

Device Start End Sectors Size Type

able_3.raw1 2048 104447 102400 50M Linux filesystem

able_3.raw2 104448 309247 204800 100M Linux filesystem

able_3.raw3 571392 8388574 7817183 3.7G Linux filesystem

Looking at the output, we see that the disk has a GPT partitioning scheme. You could re-run
the command using gdisk for documentation purposes. Once we’ve finished with fdisk, exit
the root login and you are back to a normal user:

root@forensicbox:able_3# exit

barry@forensicbox:able_3$

Now use dd to carve each of the partitions. With the output of fdisk -l shown above, the
job is easy.

barry@forensicbox:able_3$ dd if=able_3.raw of=able_3.part1.raw bs=512 skip=2048
count=102400

102400+0 records in

102400+0 records out

52428800 bytes (52 MB, 50 MiB) copied, 1.742 s, 30.1 MB/s

barry@forensicbox:able_3$ dd if=able_3.raw of=able_3.part2.raw bs=512
skip=104448 count=204800

204800+0 records in

204800+0 records out

104857600 bytes (105 MB, 100 MiB) copied, 0.731567 s, 143 MB/s

224

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

barry@forensicbox:able_3$ dd if=able_3.raw of=able_3.part3.raw bs=512
skip=571392 count=7817183

7817183+0 records in

7817183+0 records out

4002397696 bytes (4.0 GB, 3.7 GiB) copied, 35.585 s, 112 MB/s

Examine these commands closely. The input file (if=able_3.raw) is the full disk image. The
output files (of=able_3.part#.raw) will contain each of the partitions. The block size that
we are using is the sector size (bs=512), which matches the output of the fdisk command.
Each dd section needs to start where each partition begins (skip=X), and cut as far as the
partition goes (count=Y). The count is from the Sectors column of the fdisk output and
tells us the number of sectors to count.

This will leave you with three able_3.part*.raw files in your current directory that can now
be loop mounted without the need for special programs. We will explore and work with
these partitions in the following section.

10.2.3 Reconstructing a Subject File System (Linux)

Going back to our able_3 case raw images, we now have the original image along with the
partition images that we carved out (plus the original split images).

able_3.part1.raw (1st Partition) able_3.part2.raw (2nd Partition) able_3.part3.raw (3rd
Partition)

The next trick is to mount the partitions in such a way that we reconstruct the original file
system. This generally pertains to subject disks that were imaged from Unix hosts, but it
still makes for a good command line exercise.

One of the benefits of Linux/Unix systems is the ability to separate the file system across
partitions. This can be done for any number of reasons, allowing for flexibility where there
are concerns about disk space or security, etc.

For example, a system administrator may decide to keep the directory /var/logon its own
separate partition. This might be done in an attempt to prevent rampant log files from
filling the root (/ not /root) partition and bringing the system down. In the past, finding
the /boot directory in its own partition was common as well. This allows the kernel image
to be placed near "the front" (in terms of cylinders) of a boot volume, an issue in some
older boot loaders. There are also a variety of security implications addressed by this setup.
Finally, some would consider having /home on its own partition a good idea, allowing you to
format and re-install without having to touch personal data and files.

So when you have a disk with multiple partitions, how do you find out the structure of the
file system? Earlier in this paper we discussed the /etc/fstab file. This file maintains the

225

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

mounting information for each file system, including the physical partition; mount point, file
system type, and options. Once we find this file, reconstructing the system is easy. With
experience, you will start to get a feel for how partitions are setup, and where to look for the
fstab. To make things simple here, just mount each partition (loop, read only) and have a
look around.

One thing we might like to know is what sort of file system is on each partition before
we try and mount them. We can use the file command to do this. Remember from our
earlier exercise that the file command determines the type of file by looking for “header”
information.

barry@forensicbox:able_3$ file able_3.part*
able_3.part1.raw: Linux rev 1.0 ext4 filesystem data, UUID=ca05157e-f7b3-4c6a-9b63

↪→ -235c4cad7b73 (extents) (large files) (huge files)

able_3.part2.raw: Linux rev 1.0 ext4 filesystem data, UUID=c4ac4c0f-d9de-4d26-9e16

↪→ -10583b607372 (extents) (large files) (huge files)

able_3.part3.raw: Linux rev 1.0 ext4 filesystem data, UUID=c7f748b2-3a38-44e9-aa43-

↪→ f924955b9fdd (extents) (large files) (huge files)

Previously, we were able to determine that the partitions were "Linux" partitions from the
output of fdisk. Now file informs us that the file system type is ext4. We can use this
information to mount the partitions. Remember that you will need to be root to mount the
partitions, so su to root first (or use sudo), mount and umount each partition, until you find
the /etc directory containing the fstab:

barry@forensicbox:~$ su -

Password:

root@forensicbox:~# mount -t ext4 -o ro,loop/home/barry/able_3/able_3.part1.raw
/mnt/evid

root@forensicbox:~# ls /mnt/evid

README.initrd@ config-huge-4.4.14 onlyblue.dat

System.map@ elilo-ia32.efi* slack.bmp

System.map-generic-4.4.14 elilo-x86_64.efi* tuxlogo.bmp

System.map-huge-4.4.14 grub/ tuxlogo.dat

boot.0800 inside.bmp vmlinuz@

boot_message.txt inside.dat vmlinuz-generic@

coffee.dat lost+found/ vmlinuz-generic-4.4.14

config@ map vmlinuz-huge@

config-generic-4.4.14 onlyblue.bmp vmlinuz-huge-4.4.14

(We are looking for /etc/fstab, and it’s not here...)

root@forensicbox:~# umount /mnt/evid

226

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

If you do this for each partition in turn (either un-mounting between partitions, or mounting
to a different mount point), you will eventually find the /etc directory containing the fstab

file in able_3.part3.raw with the following important entries:

barry@forensicbox:able_3$ cat /mnt/evid/etc/fstab

/dev/sda3 / ext4 defaults 1 1

/dev/sda1 /boot ext4 defaults 1 2

/dev/sda2 /home ext4 defaults 1 2

So now we see that the logical file system was constructed from three separate partitions
(note that /dev/sda here refers to the disk when it is mounted in the original system, and
not to the disk in the forensic workstation):

(root directory) mounted from /dev/sda3 (able_3.part3)

|-- bin

|-- boot mounted from /dev/sda1 (able_3.part1)

|-- dev

|-- etc

|-- home mounted from /dev/sda2 (able_3.part2)

|-- lib

|-- lib64

|-- lost+found

|-- media

|-- mnt

|-- opt

|-- proc

|-- root

|-- run

|-- sbin

|-- srv

|-- sys

|-- tmp

|-- usr

‘-- var

Now we can create the original file system at our evidence mount point. The mount point
/mnt/evid already exists. When you mount the root partition of able_3.raw on /mnt/evid,
you will note that the directories /mnt/evid/boot and /mnt/evid/home already exist, but are
empty. That is because we have to mount those volumes to access the contents of those
directories. We mount the root file system first, and the others are mounted to that. Again,
we will executing as root for this:

root@forensicbox:able_3# mount -t ext4 -o ro,loop able_3.part3.raw /mnt/evid

root@forensicbox:able_3# mount -t ext4 -o ro,loop able_3.part1.raw /mnt/evid/boot

227

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

root@forensicbox:able_3# mount -t ext4 -o ro,loop able_3.part2.raw /mnt/evid/home

We now have the recreated original file system under /mnt/evid:

barry@forensicbox:~$ mount | grep evid

/home/barry/able_3/able_3.part3.raw on /mnt/evid type ext4 (ro)

/home/barry/able_3/able_3.part1.raw on /mnt/evid/boot type ext4 (ro)

/home/barry/able_3/able_3.part2.raw on /mnt/evid/home type ext4 (ro)

At this point we can run all of our searches and commands just as we did for the previous
fat_fs.raw exercise on a complete file system “rooted” at /mnt/evid.

As always, you should know what you are doing when you mount a complete file system on
your forensic workstation. Be aware of options to the mount command that you might want
to use (check man mount for options like nodev and nosuid, noatime, etc.). Take note of where
links point to from the subject file system. Note that we have mounted the partitions “read
only” (ro). Remember to unmount (umount) each partition when you are finished exploring.

228

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

11 Advanced Analysis Tools

So now you have some experience with using the Linux command line and the powerful tools
that are provided with a Linux installation.

However, as forensic examiners, we soon come to find out that time is a valuable commodity.
While learning to use the command line tools native to a Linux install is useful for a myriad
of tasks in the "real world", it can also be tedious. After all, there are Windows based tools
out there that allow you to do much of what we have discussed here in a simple point and
click GUI.

The popularity of Linux is growing at a fantastic rate. Not only do we see it in an enterprise
environment and in big media, but it continues to grow in popularity within the field of
computer forensics. In recent years we’ve seen the list of available forensic tools for Linux
grow with the rest of the industry.

In this section we will cover a number of forensic tools available to make your analysis easier
and more efficient.

AUTHOR’S NOTE: Inclusion of tools and packages in this section in no way constitutes an
endorsement of those tools. Please test them yourself to ensure that they meet your needs.

Since this is a Linux document, I am covering available Linux tools. This does not mean
that the common tools available for other platforms cannot be used to accomplish many of
the same results.

Remember, as you work through these exercises, this document is NOT meant to be an
education in file system or physical volume analysis. As you work through the exercises you
will come across terms like inode, MFT entry, allocation status, partition tables and direct
and indirect blocks, etc. These exercises are about using the tools, and are not meant to
instruct you on basic forensic knowledge, Linux file systems or any other file systems. This
is all about the tools.

If you need to learn file system structure as it relates to computer forensics, please read
Brian Carrier’s book: File System Forensic Analysis (Published by Addison-Wesley, 2005).
This is not the last time I will suggest this.

To get a quick overview of some file systems, you can do a quick Internet search. There is a
ton of information readily available if you need a primer. Here are some simple links to get
you started. If you have questions on any of these file systems, or how they work, I would
suggest some light reading before diving into these exercises.

NTFS http://www.ntfs.com
http://en.wikipedia.org/wiki/NTFS

ext2/3/4 http://e2fsprogs.sourceforge.net/ext2intro.html

229

http://www.ntfs.com
http://en.wikipedia.org/wiki/NTFS
http://e2fsprogs.sourceforge.net/ext2intro.html

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

http://en.wikipedia.org/wiki/Ext3
http://en.wikipedia.org/wiki/Ext4

FAT http://en.wikipedia.org/wiki/File_allocation_table

Also, once Sleuth Kit (which we cover soon) is installed, you might want to browse around
http://wiki.sleuthkit.org/ for additional information on file systems and implementa-
tion.

11.1 The Layer Approach to Analysis

One of the reasons Linux is seen as both extremely efficient by its proponents and excessively
complex by its detractors is it’s focus on modular programming where one tool accomplishes
one task rather than the "suite of tools" approach of many commercial tools. The design
of Linux tools, both GNU command line utilities and forensic software such as the Sleuth
Kit, can appear daunting when a student realizes that they must try to remember multiple
tools, outputs, and command parameters in order to execute an effective examination rather
that navigating a graphical menu where functions, options, and output are displayed in an
organized "one click away" fashion.

Brian Carrier, author of The Sleuth Kit, utilizes a framework for storage device analysis in
his book File System Forensic Analysis, which we mentioned earlier. Using this approach,
Carrier organizes his tools into a series of virtual layers that define the purpose of each tool
with respect to a specific layer. Conveniently, the Sleuth Kit tools are named according to
these layers. By introducing tools in a given category and defining their respective appli-
cability to a specific virtual layer, students can better organize their understanding of each
tool’s function and where it best fits in an analysis.

This approach can easily be extended and expanded to encompass additional tools from
outside Sleuth Kit. While some tools do not succinctly fit in this paradigm, they can still
be addressed in a sequence that fits the overall analytical approach. The following figure
provides a graphical summary of the layers Carrier designates for the analysis of evidence.

Figure 13: An example of layers and their associated content based on Carrier’s work

230

http://en.wikipedia.org/wiki/Ext3
http://en.wikipedia.org/wiki/Ext4
http://en.wikipedia.org/wiki/File_allocation_table
http://wiki.sleuthkit.org/

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

This has the added benefit of giving students a method of conceptualizing the way tools are
employed.

We have a diverse set of tools to work with in Linux, particularly where tackling an analysis
from the command line is concerned. Knowing when to use which tools can be better
understood by extending this layer approach to our entire analysis.

We’ve already covered a number of common tools like dd, dc3dd, hdparm, lsscsi, lshw and
others. These are examples of tools that work at the physical media layer – looking directly
at physical media and disk information, including serial numbers, disk sector sizes and the
physical bus on which the media resides.

We’ve also looked at tools that act on the media management layer, like fdisk, gdisk, losetup
and others. These tools parse or work on information provided at the partition table level,
but without specifically acting on the file systems themselves.

As we progress through the rest of this guide, be aware that often a tool’s place in the layer
approach is not defined by the tool itself, but by how you use it. Take grep for example.
grep looks for matching expressions in a file. So we could say it works on the file sub layer
of the file system layer (refer to the illustration above). However, when we use it against
a forensic image of a physical disk (like our able_3.raw file), we are not using it at the file
layer of that image, but at the physical layer of the image. I can grep for an expression in
a set of files, or I can grep for an expression in a disk image. How I use the tool defines its
place, not the tool itself in many cases.

So we need to adjust our thinking on how we approach our analysis, keeping in mind that
the tool organization of the Sleuth Kit may not always directly match our analysis approach.
But we can simply summarize it like this :

1. Analyze the physical device layer:

• lshw

• lsscsi

• hdparm

2. Analyze the media management layer:

• fdisk

• gdisk

• file -s

• mmls (we will cover soon)

3. Analyze the file system layer:

• file

• fsstat

231

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

• fls

4. Analyze the file layer:

• file

• find

• common tools like ls, etc.

5. Application layer:

• View file content with less and cat, etc.
• Locate specific content with grep.
• Use external applications to view binary content: xv, display, regfmount for reg-

istry files, etc.

The commands shown here are only a few examples. There are many more that work at
each given layer. So you can see from the list above that we can have tools apply to several
different layers. This speaks to the simplicity of the Unix development approach that has
been around for decades. The tools generally do one thing, do it well, but can be versatile
in their employment.

In summary, this all means that instead of taking the approach that we might normally take
with multi-functional Windows forensic software:

• Open a program

• Open (or acquire) an image file with that program

• "Index" the image file within the program

• Navigate the menus, collecting data and reporting it

...we can now sit at a command prompt and step through the various layers of our examina-
tion, collecting and redirecting information as we go, peeling through layer by layer of our
analysis until we reach our conclusion. Instead of fumbling around the command line, we
target our commands to the layer we are currently examining.

11.2 The Sleuth Kit

The first of the advanced external tools we will cover here is a collection of command line
tools called the Sleuth Kit (TSK). This is a suite of tools written by Brian Carrier and
maintained at http://www.sleuthkit.org. It is partially based on The Coroner’s Toolkit
(TCT) originally written by Dan Farmer and Wietse Venema. TSK adds additional file
system support and allows you to analyze various file system types regardless of the platform
you are currently working on. The current version, as of this writing is 4.6.x.

232

http://www.sleuthkit.org

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

Let’s start with a discussion of the tools first. Most of this information is readily available
in the Sleuth Kit documentation or on the Sleuth Kit website.

We’ve already discussed the TSK’s organization of tool function by layers. Here’s a list of
some of the tools and where they fit in.

• Media management layer: mmls, mmcat, mmstat

• File system layer: fsstat

• File name layer (“Human Interface”) : fls, ffind

• Meta data (inode) layer: icat, ils, ifind, istat

• Content (data) layer: blkcalc, blkcat, blkls, blkstat

We also have tools that address physical disks and tools that address the "journals" of some
file systems.

• Journal tools: jcat, jls

• File content tools: hfind, fcat

Notice the commands that correspond to the analysis of a given layer generally begin with a
common letter. For example, the file system commands start with fs and the inode (meta-
data) layer commands start with i and so on.

If the "layer" approach referenced above seems a little confusing to you, you should take the
time to read TSK’s tool overview at:

http://wiki.sleuthkit.org/index.php?title=TSK_Tool_Overview

The author does a fine job of defining and describing these layers and how they fit together
for a forensic analysis. Understanding that TSK tools operate at different layers is extremely
important.

When running through the following exercises, pay attention to the fact that the output of
each tool is specifically tailored to the file system being analyzed. For example, the fsstat

command is used to print file system details (fs layer). The structure of the output and
the descriptive fields change depending on the target file system. This will become apparent
throughout the exercises.

In addition to the tools already mentioned, there are some miscellaneous tools included with
the Sleuth Kit that don’t fall into the above categories:

• tsk_recover: recovers unallocated (or all) files from a file system.

• tsk_gettimes: creates a body file for timelines (file activity only)

233

http://wiki.sleuthkit.org/index.php?title=TSK_Tool_Overview

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

• sorter: categorizes allocated and unallocated files based on type (images, executables,
etc). Extremely flexible and configurable.

• img_cat: allows for the separation of meta-data and original data from image files
(media duplication, not pictures).

• img_stat: provides information about a forensic image. The information it provides is
dependent on the image format (aff, ewf, etc.).

• hfind: hash lookup tool. Creates and searches an indexed database.

• sigfind: searches a given file (forensic image, disk, etc.) for a hex signature at any
specified offset (sector boundary). Used for finding data structures

• mactime: creates a time line of file activity. Useful for intrusion investigations where
temporal relationships are critical.

• srch_strings: like standard BSD strings command, but with the ability to parse
different encodings.

11.2.1 Sleuth Kit Installation

On Slackware, we can install TSK simply with sboinstall:

root@forensicbox:~# sboinstall sleuthkit

...

Proceed with sleuthkit? [y]

...

Cleaning for sleuthkit-4.6.6...

When we install TSK using the SlackBuild through sboinstall, or if you install it manually
from source, you can watch the build process. It should be noted that in order for Sleuth
Kit tools to have built-in support for Expert Witness format images (EWF images), we need
to have libewf installed first. This is why we covered libewf and installed it earlier in the
guide. While the Sleuth Kit is configuring its installation process, it searches the system for
libraries that it supports. Unless it’s told not to include specific capabilities, it will compile
itself accordingly. In this case, since we have libewf and afflib already installed, TSK will
be built with those formats supported. This will allow us to work directly on EWF and AFF
images.29

When the installation is finished, you will find the Sleuth Kit tools located in /usr/bin.

Remember, you can view a list of what was installed (and other package information) by
viewing the file at /var/log/packages/sleuthkit-<version>:

29TSK also supports VMDK and VHDI formats which we do not cover in this guide. Install libvmdk and
libvhdi prior to installing TSK if you want to try them out.

234

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

root@forensicbox:~# less /var/log/packages/sleuthkit-4.6.6-x86_64-1_SBo

PACKAGE NAME: sleuthkit-4.6.6-x86_64-1_SBo

COMPRESSED PACKAGE SIZE: 656K

...

usr/

usr/bin/

usr/bin/blkcalc

usr/bin/blkcat

usr/bin/blkls

usr/bin/blkstat

usr/bin/fcat

usr/bin/ffind

usr/bin/fiwalk

...

Use the man page for each of the utilities installed to /usr/bin shown in the output to get an
idea of the complete capabilities of TSK.

11.3 Sleuth Kit Exercises

This section remains one of the most popular sections of this guide, providing hands on
exercises for TSK and a sample of its tools.

Like all of the other exercises introduced here, it is strongly suggested you follow along if
you can. Using these commands on your own is the only way to really learn the techniques.
Read the included man pages and play with the options to obtain novel output. The image
files used in the following examples are available for download, and some have already been
downloaded and used earlier in the guide.

There are a number of ways to tackle the following problems. In some cases we’ll use affuse

or ewfmount to provide fuse mounted images from EWF files or split files. We’ll do it for
practice here, but feel free to run the tools directly on the image files themselves (there will
be demonstrations of both). Practice and experiment.

We’ll also use some of the older image files that were used in previous versions of the guide.
While the images are old and the file systems somewhat deprecated, we use them here
because they provide a perfect vehicle for demonstrating tool usage. You’ll understand this
a bit more as we progress. We can compare output on some of the newer images and you’ll
understand some of the limitations.

For the following set of exercises, we’ll use the able2 image, one of the older but more
educational images we’ve used. Create a directory for the able2 image and then cd into the
directory. As usual, download with wget and check the hash, making sure it matches what
we have here:

235

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

barry@forensicbox:~$ mkdir able2

barry@forensicbox:~$ cd able2

barry@forensicbox:able2$ wget https://www.linuxleo.com/Files/able2.tar.gz

barry@forensicbox:able2$ sha1sum able2.tar.gz

a093ec9aed6054665b89aa82140803790be97a6e able2.tar.gz

Extract the archive to decompress the image and then let’s get started. Get your hands on
the keyboard and follow along.

barry@forensicbox:able2$ tar tzf able2.tar.gz <- list contents first

able2.dd

able2.log

md5.dd

md5.hdd

barry@forensicbox:able2$ tar xzvf able2.tar.gz <- then extract the contents

able2.dd

able2.log

md5.dd

md5.hdd

Recall that by listing the contents of the archive first with the t option, we can see that it
will extract to our current directory (no leading paths in the listing) instead of somewhere
unexpected.

11.3.1 Sleuth Kit Exercise 1A: Deleted File Identification and Recovery (ext2)

We will start with a look at a couple of the file system and file name layer tools, fsstat and
fls, running them against our able2 image.

Part of the TSK suite of tools, mmls, provides access to the partition table within an image,
and gives the partition offsets in sector units. mmls provides much the same information as
we get from fdisk or gdisk.

barry@forensicbox:able2$ mmls able2.dd

DOS Partition Table

Offset Sector: 0

Units are in 512-byte sectors

Slot Start End Length Description

236

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

000: Meta 0000000000 0000000000 0000000001 Primary Table (#0)

001: ------- 0000000000 0000000056 0000000057 Unallocated

002: 000:000 0000000057 0000010259 0000010203 Linux (0x83)

003: 000:001 0000010260 0000112859 0000102600 Linux (0x83)

004: 000:002 0000112860 0000178694 0000065835 Linux Swap / Solaris x86 (0

↪→ x82)

005: 000:003 0000178695 0000675449 0000496755 Linux (0x83)

For the sake of this analysis, the information we are looking for is located on the root
partition (file system) of our image. The root (/) file system is located on the second
partition. Looking at our mmls output, we can see that that partition starts at sector 10260

(actually numbered 03 in the mmls output, or slot 000:001).

So, we run the Sleuth Kit fsstat command with -o 10260 to gather file system information
at that offset. By using the sector offset provided by mmls, we tell our TSK tools where the
volume begins. Pipe the output through less to page through:

barry@forensicbox:able2$ fsstat -o 10260 able2.dd | less

FILE SYSTEM INFORMATION

--

File System Type: Ext2

Volume Name:

Volume ID: 906e777080e09488d0116064da18c0c4

Last Written at: 2003-08-10 14:50:03 (EDT)

Last Checked at: 1997-02-11 00:20:09 (EST)

Last Mounted at: 1997-02-13 02:33:02 (EST)

Unmounted Improperly

Source OS: Linux

Dynamic Structure

InCompat Features: Filetype,

Read Only Compat Features: Sparse Super,

METADATA INFORMATION

--

Inode Range: 1 - 12881

Root Directory: 2

Free Inodes: 5807

CONTENT INFORMATION

--

Block Range: 0 - 51299

Block Size: 1024

Reserved Blocks Before Block Groups: 1

Free Blocks: 9512

237

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

BLOCK GROUP INFORMATION

--

Number of Block Groups: 7

Inodes per group: 1840

Blocks per group: 8192

Group: 0:

Inode Range: 1 - 1840

Block Range: 1 - 8192

Layout:

Super Block: 1 - 1

Group Descriptor Table: 2 - 2

Data bitmap: 3 - 3

Inode bitmap: 4 - 4

Inode Table: 5 - 234

Data Blocks: 235 - 8192

Free Inodes: 789 (42%)

Free Blocks: 4601 (56%)

Total Directories: 16

...

The fsstat command provides type specific information about the file system in a volume.
As previously noted, we ran the fsstat command above with the option -o 10260. This
specifies that we want information from the file system residing on the partition that starts
at sector offset 10260.

We can get more information using the fls command. fls lists the file names and directories
contained in a file system or in a directory if the meta-data identifier for a particular directory
is passed. The output can be adjusted with a number of options, to include gathering
information about deleted files. If you type fls on its own, you will see the available options
(view the man page for a more complete explanation).

If you run the fls command with only the -o option to specify the file system, then by
default it will run on the file system’s root directory. This is inode 2 on an EXT file system
and MFT entry 5 on an NTFS file system. In other words, on an EXT file system, running:

barry@forensicbox:able2$ fls -o 10260 able2.dd

And ...

barry@forensicbox:able2$ fls -o 10260 able2.dd 2

238

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

...will result in the same output. In the second command, the 2 passed at the end of the
command means "root directory"(for EXT), which is the default in the first command.

So, in the following command, we run fls and only pass -o 10260. This results in a listing
of the contents of the root directory:

barry@forensicbox:able2$ fls -o 10260 able2.dd

d/d 11: lost+found

d/d 3681: boot

d/d 7361: usr

d/d 3682: proc

d/d 7362: var

d/d 5521: tmp

d/d 7363: dev

d/d 9201: etc

d/d 1843: bin

d/d 1844: home

d/d 7368: lib

d/d 7369: mnt

d/d 7370: opt

d/d 1848: root

d/d 1849: sbin

r/r 1042: .bash_history

d/d 11105: .001

V/V 12881: $OrphanFiles

There are several points we want to take note of before we continue. Let’s take a few lines
of output and describe what the tool is telling us. Have a look at the last three lines from
the above fls command.

r/r 1042: .bash_history

d/d 11105: .001

V/V 12881: $OrphanFiles

Each line of output starts with two characters separated by a slash. This field indicates the
file type as described by the file’s directory entry, and the file’s meta-data (in this case, the
inode because we are looking at an EXT file system). For example, the first file listed in the
snippet above, .bash_history, is identified as a regular file in both the file’s directory and
inode entry. This is noted by the r/r designation. Conversely, the second entry (.001) is
identified as a directory.

The last line of the output, $OrphanFiles, is a virtual folder created by TSK and assigned a
virtual inode. This folder contains virtual file entries that represent unallocated meta data
entries where there are no corresponding file names. These are commonly referred to as
"orphan files", which can be accessed by specifying the meta data address, but not through

239

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

any file name or path.

The next field is the meta-data entry number (inode, MFT entry, etc.) followed by the
filename. In the case of the file .bash_history the inode is listed as 1042.

We can continue to run fls on directory entries to dig deeper into the file system structure
(or use -r for a recursive listing). By passing the meta data entry number of a directory, we
can view its contents. Read man fls for a look at some useful features. For example, have a
look at the .001 directory in the listing above. This is an unusual directory and would cause
some suspicion. It is hidden (starts with a "."), and no such directory is common in the root
of the file system. So to see the contents of the .001 directory, we would pass its inode to
fls:

barry@forensicbox:able2$ fls -o 10260 able2.dd 11105

r/r 2138: lolit_pics.tar.gz

r/r 11107: lolitaz1

r/r 11108: lolitaz10

r/r 11109: lolitaz11

r/r 11110: lolitaz12

r/r 11111: lolitaz13

r/r 11112: lolitaz2

r/r 11113: lolitaz3

r/r 11114: lolitaz4

r/r 11115: lolitaz5

r/r 11116: lolitaz6

r/r 11117: lolitaz7

r/r 11118: lolitaz8

r/r 11119: lolitaz9

The contents of the directory are listed. We will cover commands to view and analyze the
individual files later on.

fls can also be useful for uncovering deleted files. By default, fls will show both allocated
and unallocated files. We can change this behavior by passing other options. For example,
if we wanted to see only deleted entries that are listed as files (rather than directories), and
we want the listing to be recursive, we could use the following command:

barry@forensicbox:able2$ fls -o 10260 -Frd able2.dd

r/r * 11120(realloc): var/lib/slocate/slocate.db.tmp

r/r * 10063: var/log/xferlog.5

r/r * 10063: var/lock/makewhatis.lock

r/r * 6613: var/run/shutdown.pid

r/r * 1046: var/tmp/rpm-tmp.64655

r/r * 6609(realloc): var/catman/cat1/rdate.1.gz

r/r * 6613: var/catman/cat1/rdate.1.gz

r/r * 6616: tmp/logrot2V6Q1J

240

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

r/r * 2139: dev/ttYZ0/lrkn.tgz

d/r * 10071(realloc): dev/ttYZ0/lrk3

r/r * 6572(realloc): etc/X11/fs/config-

l/r * 1041(realloc): etc/rc.d/rc0.d/K83ypbind

l/r * 1042(realloc): etc/rc.d/rc1.d/K83ypbind

l/r * 6583(realloc): etc/rc.d/rc2.d/K83ypbind

l/r * 6584(realloc): etc/rc.d/rc4.d/K83ypbind

l/r * 1044: etc/rc.d/rc5.d/K83ypbind

l/r * 6585(realloc): etc/rc.d/rc6.d/K83ypbind

r/r * 1044: etc/rc.d/rc.firewall~

r/r * 6544(realloc): etc/pam.d/passwd-

r/r * 10055(realloc): etc/mtab.tmp

r/r * 10047(realloc): etc/mtab~

r/- * 0: etc/.inetd.conf.swx

r/r * 2138(realloc): root/lolit_pics.tar.gz

r/r * 2139: root/lrkn.tgz

-/r * 1055: $OrphanFiles/OrphanFile-1055

-/r * 1056: $OrphanFiles/OrphanFile-1056

-/r * 1057: $OrphanFiles/OrphanFile-1057

-/r * 2141: $OrphanFiles/OrphanFile-2141

-/r * 2142: $OrphanFiles/OrphanFile-2142

-/r * 2143: $OrphanFiles/OrphanFile-2143

...

In the above command, we run the fls command against the partition in able2.dd starting
at sector offset 10260 (-o 10260), showing only file entries (-F), descending into directories
recursively (-r), and displaying deleted (unallocated) entries (-d).

Notice that all of the files listed have an asterisk (*) before the inode. This indicates the
file is deleted or unallocated, which we expect in the above output since we specified the -d

option to fls. We are then presented with the meta-data entry number (inode, MFT entry,
etc.) followed by the filename.

Have a look at the line of output for inode number 2138 (root/lolit_pics.tar.gz). The
inode is followed by realloc. Keep in mind that fls describes the file name layer. The
realloc means that the file name listed is marked as unallocated, even though the meta
data entry (2138) is marked as allocated. In other words...the inode from our deleted file
may have been “reallocated” to a new file.

According to Brian Carrier:

The difference comes about because there is a file name layer and a metadata
layer. Every file has an entry in both layers and each entry has its own allocation
status.

If a file is marked as "deleted" then this means that both the file name and
metadata entries are marked as unallocated. If a file is marked as "realloc" then

241

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

this means that its file name is unallocated and its metadata is allocated.
The latter occurs if:

• The file was renamed and a new file name entry was created for the file, but
the metadata stayed the same.

• NTFS resorted the names and the old copies of the name will be "unallo-
cated" even though the file still exists (we are on an EXT file system here,
so this does not apply)

• The file was deleted, but the metadata has been reallocated to a new file.

In the first two cases, the metadata correctly corresponds to the deleted file name.
In the last case, the metadata may not correspond to the name because it may
instead correspond to a new file.

In the case of inode 2138, it looks as though the realloc was caused by the file being moved
to the directory .001 (see the fls listing of .001 on the previous page - inode 11105). This
causes it to be deleted from its current directory entry (root/lolit_pics.tar.gz) and a new
file name created (.001/lolit_pics.tar.gz). The inode and the data blocks that it points to
remain unchanged and in "allocated status", but it has been "reallocated" to the new name.

Let’s continue our analysis exercise using a couple of meta data (inode) layer tools included
with the Sleuth Kit. In a Linux EXT type file system, an inode has a unique number
and is assigned to a file. The number corresponds to the inode table, allocated when a
partition is formatted. The inode contains all the meta data available for a file, including
the modified/accessed/changed (mac) times and a list of all the data blocks allocated to that
file.

If you look at the output of our last fls command, you will see a deleted file called lrkn.tgz

located in the /root directory (the last file in the output of our fls command, before the list
of orphan files -recall that the asterisk indicates it is deleted):

...

r/r * 2139: root/lrkn.tgz

...

The inode displayed by fls for this file is 2139. This same inode also points to another
deleted file in /dev earlier in the output (same file, different location). We can find all the
file names associated with a particular meta data entry by using the ffind command:

barry@forensicbox:able2$ ffind -o 10260 -a able2.dd 2139

* /dev/ttYZ0/lrkn.tgz

* /root/lrkn.tgz

Here we see that there are two file names associated with inode 2139, and both are deleted,
as noted again by the asterisk (the -a ensures that we get all the inode associations).

242

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

Continuing on, we are going to use istat. Remember that fsstat took a file system as an
argument and reported statistics about that file system. istat does the same thing; only it
works on a specified inode or meta data entry. In NTFS, this would be an MFT entry, for
example. Here we are working on an EXT file system, so the istat command works on EXT
inodes.

We use istat to gather information about inode 2139:

barry@forensicbox:able2$ istat -o 10260 able2.dd 2139 | less

Not Allocated

Group: 1

Generation Id: 3534950564

uid / gid: 0 / 0

mode: rrw-r--r--

size: 3639016

num of links: 0

Inode Times:

Accessed: 2003-08-10 00:18:38 (EDT)

File Modified: 2003-08-10 00:08:32 (EDT)

Inode Modified: 2003-08-10 00:29:58 (EDT)

Deleted: 2003-08-10 00:29:58 (EDT)

Direct Blocks:

22811 22812 22813 22814 22815 22816 22817 22818

22819 22820 22821 22822 22824 22825 22826 22827

...

32233 32234

Indirect Blocks:

22823 23080 23081 23338 23595 23852 24109 24366

30478 30735 30992 31249 31506 31763 32020

This reads the inode statistics (istat), on the file system located in the able2.dd image in
the partition at sector offset 10260 (-o 10260), from inode 2139 found in our fls command.
There is a large amount of output here, showing all the inode information and the file system
blocks ("Direct Blocks") that contain all of the file’s data. We can either pipe the output of
istat to a file for logging, or we can send it to less for viewing.

The Sleuth Kit supports a number of different file systems. istat (along with many of the
Sleuth Kit commands) will work on more than just an EXT file system. The descriptive
output will change to match the file system istat is being used on. We will see more of this
a little later. You can see the supported file systems by running istat with -f list.

barry@forensicbox:able2$ istat -f list

Supported file system types:

243

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

ntfs (NTFS)

fat (FAT (Auto Detection))

ext (ExtX (Auto Detection))

iso9660 (ISO9660 CD)

hfs (HFS+)

ufs (UFS (Auto Detection))

raw (Raw Data)

swap (Swap Space)

fat12 (FAT12)

fat16 (FAT16)

fat32 (FAT32)

exfat (exFAT)

ext2 (Ext2)

ext3 (Ext3)

ext4 (Ext4)

ufs1 (UFS1)

ufs2 (UFS2)

yaffs2 (YAFFS2)

We now have the name of a deleted file of interest (from fls) and the inode information,
including where the data is stored (from istat).

Now we are going to use the icat command from TSK to grab the actual data contained
in the data blocks referenced from the inode. icat also takes the inode as an argument and
reads the content of the data blocks that are assigned to that inode, sending it to standard
output. Remember, this is a deleted file that we are recovering here.

We are going to send the contents of the data blocks assigned to inode 2139 to a file for
closer examination.

barry@forensicbox:able2$ icat -o 10260 able2.dd 2139 > lrkn.tgz.2139

This runs the icat command on the file system in our able2.dd image at sector offset 10260

(-o 10260) and streams the contents of the data blocks associated with inode 2139 to the file
lrkn.tgz.2139. The filename is arbitrary; I simply took the name of the file from fls and
appended the inode number to indicate that it was recovered. Normally this output should
be directed to some results or specified evidence directory.

Now that we have what we hope is a recovered file, what do we do with it? Look at the
resulting file with the file command:

barry@forensicbox:able2$ file lrkn.tgz.2139

lrkn.tgz.2139: gzip compressed data, was "lrkn.tar", last modified: Sat Oct 3

↪→ 09:04:08 1998, from Unix, original size 10106880

244

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

Have a look at the contents of the recovered archive (pipe the output through less...it’s
long). Remember that the t option to the tar command lists the contents of the archive.

barry@forensicbox:able2$ tar tzvf lrkn.tgz.2139 | less

drwxr-xr-x lp/lp 0 1998-10-01 18:48 lrk3/

-rwxr-xr-x lp/lp 742 1998-06-27 11:30 lrk3/1

-rw-r--r-- lp/lp 716 1996-11-02 16:38 lrk3/MCONFIG

-rw-r--r-- lp/lp 6833 1998-10-03 05:02 lrk3/Makefile

-rw-r--r-- lp/lp 6364 1996-12-27 22:01 lrk3/README

-rwxr-xr-x lp/lp 90 1998-06-27 12:53 lrk3/RUN

...

-rwxr-xr-x lp/lp 5526 1998-08-06 06:36 lrk3/z2

-rw-r--r-- lp/lp 1996 1996-11-02 16:39 lrk3/z2.c

We have not yet extracted the archive, we’ve just listed its contents. Notice that there is
a README file included in the archive. If we are curious about the contents of the archive,
perhaps reading the README file would be a good idea, yes? Rather that extract the entire
contents of the archive, we will go for just the README using the following tar command:

barry@forensicbox:able2$ tar xzvfO lrkn.tgz.2139 lrk3/README > lrkn.2139.README

lrk3/README

The difference with this tar command is that we specify that we want the output sent to
stdout (O -capital letter ’oh’) so we can redirect it. We also specify the name of the file that
we want extracted from the archive (lrk3/README). This is all redirected to a new file called
lrkn.2139.README.

If you read that file (use less), you will find that we have uncovered a "rootkit", full of
programs used to hide a hacker’s activity.

Briefly, let’s look at a different type of file recovered by icat. The concept is the same, but
instead of extracting a file, you can stream its contents to stdout for viewing. Recall our
previous directory listing of the .001 directory at inode 11105:

barry@forensicbox:able2$ fls -o 10260 able2.dd 11105

r/r 2138: lolit_pics.tar.gz

r/r 11107: lolitaz1

r/r 11108: lolitaz10

r/r 11109: lolitaz11

r/r 11110: lolitaz12

r/r 11111: lolitaz13

r/r 11112: lolitaz2

r/r 11113: lolitaz3

r/r 11114: lolitaz4

r/r 11115: lolitaz5

245

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

r/r 11116: lolitaz6

r/r 11117: lolitaz7

r/r 11118: lolitaz8

r/r 11119: lolitaz9

We can determine the contents of the (allocated) file at inode 11108, for example, by using
icat to stream the inode’s data blocks through a pipe to the file command. We use the ’-’
to indicate that file is getting its input from the pipe:

barry@forensicbox:able2$ icat -o 10260 able2.dd 11108 | file -

/dev/stdin: GIF image data, version 89a, 233 x 220

The output shows that we are dealing with a picture file. So we decide to use the display

command to show us the contents. display is a useful program as it will take input from
stdin (from a pipe). This is particularly useful with the icat command.

barry@forensicbox:able2$ icat -o 10260 able2.dd 11108 | display

This results in an image opening in a window, assuming you are running in a graphical
environment and have ImageMagick installed, which provides the display utility.

Figure 14: The image produced by display when used directly from icat

11.3.2 Sleuth Kit Exercise 1B: Deleted File Identification and Recovery (ext4)

The previous exercise is a good primer for learning how to run TSK commands against a
forensic image and identify and extract files. We use an older forensic image of an ext2

246

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

file system because it allows us to run the full course of identification and extraction tools
provided by TSK. We can do this because ext2 files that are deleted still have enough
information in their associated file system metadata ("inode" for EXT file systems) to be
able to recover the file. As you will see in the coming pages, this has changed for the ext4
file system. As it has been made clear in the past, this is not meant to be an education on
file systems in general. Rather, the purpose here is to highlight the tools and how you can
expect different output based on the file system being examined. We also want to ensure
that the limitations of our tools are known. Were you to learn TSK on an ext2 file system
alone, you might expect it to work in exactly the same way on ext4. This is not the case,
and this exercise illustrates that. It is one of the primary reasons why the able_3 image was
added to our problem set.

So now we are going to roughly replicate the same analysis as the previous exercise, but this
time examining an ext4 file system in the able_3 image. We’ll be brief in the explanation
of the commands, since they are largely the same as those we ran in exercise 1A. Review
that exercise and make sure you are familiar with the commands used before proceeding
here. The files being recovered are the same, but their placement differs a bit from the able2

image.

First we need to decide how we want to access our image file. The able_3 disk image, as it
was downloaded, is a set of four split images. As we’ve done before, you could use affuse to
mount the splits as a single image and even use losetup -P to separate the partitions. But
since the Sleuth Kit supports analysis of split image files, we’ll go ahead and just leave them
as is. You can use the img_stat command from TSK to document this.

Start by changing into the able_3 directory we created previously for our image files, run
img_stat to see the split file support and run mmls to identify the partitions. When using
TSK on split images, we only need to provide the first image file in the set (the same rule
holds for EWF files – you only provide the first file name in the set):

barry@forensicbox:~$ cd able_3

barry@forensicbox:able_3$ img_stat able_3.000

IMAGE FILE INFORMATION

--

Image Type: raw

Size in bytes: 4294967296

Sector size: 512

--

Split Information:

able_3.000 (0 to 1073741823)

able_3.001 (1073741824 to 2147483647)

able_3.002 (2147483648 to 3221225471)

able_3.003 (3221225472 to 4294967295)

247

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

barry@forensicbox:able_3$ mmls able_3.000

GUID Partition Table (EFI)

Offset Sector: 0

Units are in 512-byte sectors

Slot Start End Length Description

000: Meta 0000000000 0000000000 0000000001 Safety Table

001: ------- 0000000000 0000002047 0000002048 Unallocated

002: Meta 0000000001 0000000001 0000000001 GPT Header

003: Meta 0000000002 0000000033 0000000032 Partition Table

004: 000 0000002048 0000104447 0000102400 Linux filesystem

005: 001 0000104448 0000309247 0000204800 Linux filesystem

006: ------- 0000309248 0000571391 0000262144 Unallocated

007: 002 0000571392 0008388574 0007817183 Linux filesystem

008: ------- 0008388575 0008388607 0000000033 Unallocated

Since our purpose here it to highlight the differences between the examination of this image
set vs. the able2 image, rather than search each partition individually we will just focus on
the /home partition. Recall from our file system reconstruction exercise that the partition
used for the /home directory on the able_3 image is the partition at offset 104448 (bold for
emphasis above).

Run fsstat on that partition to identify the file system type and information. You might
want to pipe the output through less for easier viewing:

barry@forensicbox:able_3$ fsstat -o 104448 able_3.000

FILE SYSTEM INFORMATION

--

File System Type: Ext4

Volume Name:

Volume ID: 7273603b5810169e264dded90f4cacc4

Last Written at: 2017-05-25 15:20:50 (EDT)

Last Checked at: 2017-05-06 16:49:45 (EDT)

Last Mounted at: 2017-05-25 15:10:23 (EDT)

Unmounted properly

Last mounted on: /home

...

Here we see we are examining an ext4 file system that was mounted on /home. Run a quick
fls command to view the contents of this partition:

barry@forensicbox:able_3$ fls -o 104448 able_3.000

d/d 11: lost+found

248

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

d/d 12: ftp

d/d 13: albert

V/V 25689: $OrphanFiles

You can see there are few entries here. You could start digging down by providing the inode
to the fls command for the contents of individual directories, but instead we’ll simply do a
recursive fls.

barry@forensicbox:able_3$ fls -o 104448 -r able_3.000

d/d 11: lost+found

d/d 12: ftp

d/d 13: albert

+ d/d 14: .h

++ r/d * 15(realloc): lolit_pics.tar.gz

++ r/r * 16(realloc): lolitaz1

++ r/r * 17: lolitaz10

++ r/r * 18: lolitaz11

++ r/r * 19: lolitaz12

++ r/r 20: lolitaz13

++ r/r * 21: lolitaz2

++ r/r * 22: lolitaz3

++ r/r * 23: lolitaz4

++ r/r * 24: lolitaz5

++ r/r * 25: lolitaz6

++ r/r * 26: lolitaz7

++ r/r * 27: lolitaz8

++ r/r * 28: lolitaz9

+ d/d 15: Download

++ r/r 16: index.html

++ r/r * 17: lrkn.tar.gz

V/V 25689: $OrphanFiles

You can see some familiar files in this output. We see the lolitaz files we saw in the .001

directory on able2, and we also see the lrkn.tar.gz file we recovered and extracted the
README from. For this exercise, we will be interested in the lolitaz files. The lrkn.tar.gz

contents will come later. You’ll notice that the majority of the files reside in an allocated
(not deleted) directory called .h and are unallocated files (signified by the asterisk *). There
is a single allocated file in that directory called lolitaz13. Compare the output of istat and
a follow-up icat command between the allocated file lolitaz13 (inode 20), and one of the
deleted files - we’ll use lolitaz2 (inode 21). For the icat command, we’ll pipe the output to
our hex viewer xxd and look at the first five lines with head -n 5. Here’s the output of both:

barry@forensicbox:able_3$ istat -o 104448 able3.000 20

inode: 20

249

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

Allocated

Group: 0

Generation Id: 1815721463

uid / gid: 1000 / 100

mode: rrw-r--r--

Flags: Extents,

size: 15045

num of links: 1

Inode Times:

Accessed: 2017-05-08 00:18:16 (EDT)

File Modified: 2003-08-03 19:15:07 (EDT)

Inode Modified: 2017-05-08 00:18:16 (EDT)

Direct Blocks:

9921 9922 9923 9924 9925 9926 9927 9928

9929 9930 9931 9932 9933 9934 9935

barry@forensicbox:able_3$ icat -o 104448 able3.000 20 | xxd | head -n 5

00000000: ffd8 ffe0 0010 4a46 4946 0001 0100 0001JFIF......

00000010: 0001 0000 ffdb 0043 0008 0606 0706 0508C........

00000020: 0707 0709 0908 0a0c 140d 0c0b 0b0c 1912

00000030: 130f 141d 1a1f 1e1d 1a1c 1c20 242e 2720 $.’

00000040: 222c 231c 1c28 3729 2c30 3134 3434 1f27 ",#..(7),01444.’

The interesting output of istat is highlighted in red. We can see that the inode is allocated
and the data can be found in the direct blocks specified at the bottom. When viewed with
xxd and head we see the expected signature of a JPEG image.

...and now for unallocated inode 21:

barry@forensicbox:able_3$ istat -o 104448 able3.000 21

inode: 21

Not Allocated

Group: 0

Generation Id: 1815721464

uid / gid: 1000 / 100

mode: rrw-r--r--

Flags: Extents,

size: 0

num of links: 0

Inode Times:

Accessed: 2017-05-08 00:18:16 (EDT)

File Modified: 2017-05-08 00:22:58 (EDT)

Inode Modified: 2017-05-08 00:22:58 (EDT)

Deleted: 2017-05-08 00:22:58 (EDT)

250

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

Direct Blocks:

barry@forensicbox:able_3$ icat -o 104448 able3.000 21 | xxd | head -n 5

<no output>

Here we have a different outcome. Inode 21 points to an unallocated file. On an ext4 file
system, when an inode is unallocated the entry for the Direct Blocks is cleared. There are
no longer pointers to the data, so commands like icat will not work. Remember that icat

works at the inode (file meta-data) layer. The icat command uses the information found in
the inode to recover the file. In this case there is none.

This does not mean we cannot recover the data that was there. On the contrary, there are a
number of techniques we can use to attempt to recover the deleted files. But in this case it
becomes far more difficult to recover the data and associate it with a particular file name and
inode information. While this sort of forensic analysis is outside the scope of our exercise,
it does highlight the difference between using these tools on two different file systems. And
that is the point: Know your tools, their capabilities, and their limits.

When we test tools for forensic use, it is not enough to say "X tool does not work on Y file
system". You should understand why. In this case it would be accurate to say that "icat
works as expected on an ext4 file system, but is of limited use on deleted entries". Be sure
to understand the difference, and test your tools!

11.3.3 Sleuth Kit Exercise 2A: Physical String Search & Allocation Status
(ext2)

We did a very basic recovery of a physical string search on our fat_fs.raw file system image
earlier in this document. This exercise is meant to take some of what we learned there and
apply it to a more complex disk image with additional challenges. In a normal examination
you are going to want to find out (if possible) what file a positive string search result belonged
to and whether or not that file is allocated or unallocated. That is the purpose of this exercise.

Exercises like this highlight very clearly the benefit of learning digital forensics with tools
like the Sleuth Kit. Unlike most GUI forensic tools with menus and multiple windows, TSK
forces you to understand these concepts behind the tools. You cannot use TSK without
understanding which tools to use and when. Without knowing the concepts behind the
tools, you don’t get very far.

Back to our able2 image. This time we are going to do a search for a single string in
able2.dd. In this case we will search our image for the keyword Cybernetik. Change to the
directory containing our able2.dd image and use grep to search for the string:

barry@forensicbox:~$ cd able2

251

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

barry@forensicbox:able2$ grep -abi cybernetik able2.dd

10561603: * updated by Cybernetik for linux rootkit

55306929:Cybernetik proudly presents...

55312943:Email: cybernetik@nym.alias.net

55312975:Finger: cybernetik@nym.alias.net

Recall that our grep command is taking the file able2.ddtreating it as a text file (-a) and
searching for the string cybernetik. The search is case-insensitive (-i) and will output the
byte offset of any matches (-b).

Our output shows that the first match comes at byte offset 10561603. Like we did in our
first string search exercise, we are going to quickly view the match by using our hex viewer
xxd and using the -s option to provide the offset given by grep. We will also use the head

command to indicate that we only want to see a specific number of lines, in this case just 5
(-n 5) We just want to get a quick look at the context of the match before proceeding.

barry@forensicbox:able2$ xxd -s 10561603 able2.dd | head -n 5

00a12843: 202a 0975 7064 6174 6564 2062 7920 4379 *.updated by Cy

00a12853: 6265 726e 6574 696b 2066 6f72 206c 696e bernetik for lin

00a12863: 7578 2072 6f6f 746b 6974 0a20 2a2f 0a0a ux rootkit. */..

00a12873: 2369 6e63 6c75 6465 203c 7379 732f 7479 #include <sys/ty

00a12883: 7065 732e 683e 0a23 696e 636c 7564 6520 pes.h>.#include

We also have to keep in mind that what we have found is the offset to the match in the
entire disk (able2.dd is a full disk image), not in a specific file system. In order to use the
Sleuth Kit tools, we need to have a file system to target.

Let’s figure out which partition (and file system) the match is in. Use bc to calculate which
sector of the image and therefore the original disk the keyword is in. Each sector is 512
bytes, so dividing the byte offset by 512 tells us which sector:

barry@forensicbox:able2$ echo "10561603/512" | bc

20628

This gives us a sector offset of 20628.

252

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

Figure 15: The sector offset in able2.dd where the search hit was found.

The Sleuth Kit’s mmls command gives us the offset to each partition in the image:

barry@forensicbox:able2$ mmls able2.dd

DOS Partition Table

Offset Sector: 0

Units are in 512-byte sectors

Slot Start End Length Description

000: Meta 0000000000 0000000000 0000000001 Primary Table (#0)

001: ------- 0000000000 0000000056 0000000057 Unallocated

002: 000:000 0000000057 0000010259 0000010203 Linux (0x83)

003: 000:001 0000010260 0000112859 0000102600 Linux (0x83)

004: 000:002 0000112860 0000178694 0000065835 Linux Swap

005: 000:003 0000178695 0000675449 0000496755 Linux (0x83)

From the output of mmls above, we see that our calculated sector, 20628, falls in the second
partition (between 10260 and 112859). The offset to our file system for the Sleuth Kit
commands will be 10260.

The problem is that the offset that we have is the keyword’s offset in the disk image, not
in the file system (which is what the volume data block is associated with). So we have to
calculate the offset to the file AND the offset to the partition that contains the file. The
offset to the partition is simply a matter of multiplying the sector offset by the size of the
sector for our file system:

barry@forensicbox:able2$ echo "10260*512" | bc

5253120

253

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

Figure 16: The volume offset in able2.dd where the search hit was found.

The difference between the two is the volume offset of the keyword hit, instead of the physical
disk (or image) offset.

barry@forensicbox:able2$ echo "10561603-5253120" | bc

5308483

Figure 17: The offset to the keyword in the volume

Now we know the offset to the keyword within the actual volume, rather than the entire
image. Let’s find out what inode (meta-data unit) points to the volume data block at that
offset. To find which inode this belongs to, we first have to calculate the volume data block
address. Look at the Sleuth Kit’s fsstat output to see the number of bytes per block. We
need to run fsstat on the file system at sector offset 10260:

254

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

barry@forensicbox:able2$ fsstat -o 10260 able2.dd

FILE SYSTEM INFORMATION

--

File System Type: Ext2

Volume Name:

Volume ID: 906e777080e09488d0116064da18c0c4

...

CONTENT INFORMATION

--

Block Range: 0 - 51299

Block Size: 1024

The abbreviated fsstat output above shows us (highlighted in bold) that the data blocks
within the volume are 1024 bytes each. If we divide the volume offset by 1024, we identify
the data block that holds the keyword hit.

barry@forensicbox:able2$ echo "5308483/1024" | bc

5184

Figure 18: Identifying the data block of the keyword

Here are our calculations, summarized:

• offset to the string in the disk image (from our grep output): 10561603

• offset to the partition that contains the file: 10260 sectors * 512 bytes per sector

• offset to the string in the partition is the difference between the two above numbers.

• the data block is the offset in the file system divided by the block size, (data unit size)
1024, from our fsstat output.

In short, our calculation, taking into account all the illustrations above, is simply:

255

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

barry@forensicbox:able2$ echo "(10561603-(10260*512))/1024" | bc

5184

Figure 19: Single calculation to identify the data block of the keyword

Note that we use parentheses to group our calculations. We find the byte offset to the file
system first (10260*512), subtract that from the offset to the string (10561603) and then
divide the whole thing by the data unit size (1024) obtained from fsstat. This (5184) is our
data unit (not the inode!) that contains the string we found with grep. Very quickly, we can
ascertain its allocation status with the Sleuth Kit command blkstat

barry@forensicbox:able2$ blkstat -o 10260 able2.dd 5184

Fragment: 5184

Not Allocated

Group: 0

The command blkstat takes a data block from a file system and tells us what it can about
its status and where it belongs. We’ll cover the TSK blk tools in more detail later. So in this
case, blkstat tells us that our key word search for the string cybernetik resulted in a match
in an unallocated block. Now we use ifind to tell us which inode (meta-data structure)
points to data block 5184 in the second partition of our image:

barry@forensicbox:able2$ ifind -o 10260 -d 5184 able2.dd

10090

Excellent! The inode that holds the keyword match is 10090. Now we use istat to give us
the statistics of that inode:

barry@forensicbox:able2$ istat -o 10260 able2.dd 10090

256

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

inode: 10090

Not Allocated

Group: 5

Generation Id: 3534950782

uid / gid: 4 / 7

mode: rrw-r--r--

size: 3591

num of links: 0

Inode Times:

Accessed: 2003-08-10 00:18:36 (EDT)

File Modified: 1996-12-25 16:27:43 (EST)

Inode Modified: 2003-08-10 00:29:58 (EDT)

Deleted: 2003-08-10 00:29:58 (EDT)

Direct Blocks:

5184 5185 5186 5187

From the istat output we see that inode 10090 is unallocated (same as blkstat told us about
the data unit). Note also that the first direct block indicated by our istat output is 5184,
just as we calculated.

We can get the data from the direct blocks of the original file by using icat -r. Pipe the
output through less so that we can read it easier. Note that our keyword is right there at
the top:

barry@forensicbox:able2$ icat -o 10260 able2.dd 10090 | less

/*

* fixer.c

* by Idefix

* inspired on sum.c and SaintStat 2.0

* updated by Cybernetik for linux rootkit

*/

#include <sys/types.h>

#include <sys/stat.h>

#include <sys/time.h>

#include <stdio.h>

...

At this point, we have recovered the data we were looking for. We can run our icat command
as above again, this time directing the output to a file (as we did with the rootkit file from
our previous recovery exercise). We’ll do that here for possible later reference:

barry@forensicbox:able2$ cat -o 10260 able2.dd 10090 > 10090.recover

257

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

barry@forensicbox:able2$ ls -l 10090.recover

-rw-r--r-- 1 barry users 3591 Jul 30 06:47 10090.recover

barry@forensicbox:able2$ md5sum 10090.recover

c3b01f91d3fa72b1b951e6d6d45c7d9a 10090.recover

One additional note: the Sleuth Kit provides a virtual directory that contains entries for
orphan files. As we previously noted, in our discussion of the fls command, these files are
the result of an inode containing file data having no file name (directory entry) associated
with it. Sleuth Kit organizes these in the virtual $OrphanFiles directory. This is a useful
feature because it allows us to identify and access orphan files from the output of the fls

command.

In this exercise, we determined through our calculations that we were looking for the contents
of inode 10090. The Sleuth Kit command ffind can tell us the file name associated with an
inode. Here, we are provided with the $OrphanFiles entry:

barry@forensicbox:able2$ ffind -o 10260 able2.dd 10090

* /$OrphanFiles/OrphanFile-10090

Remember that various file systems act very differently. We’ll continue to explore the differ-
ences between ext2 and ext4 here in the next exercise. Much like TSK exercise #1, we are
going to do the same set of steps on the able_3 image and see what we get.

11.3.4 Sleuth Kit Exercise 2B: Physical String Search & Allocation Status
(ext4)

Much like TSK exercise #1, we are going to repeat our steps here for the ext4 image in
able_3.000. Again, we are illustrating the differences in output for our tools based on the
type of file system being analyzed so that we can recognize the difference file system behavior
makes in our output. No diagrams this time. You should be familiar with the commands we
are going to use here. The goal is to show the output we can expect at the end, and how we
can perhaps deal with it.

Change back into the able_3/ directory where the able_3 image set is stored. In the able2

exercise we did a full disk search for the term cybernetik. In this case we have a set of split
images. We know the Sleuth Kit tools work on the split files, but how do I grep the entire
disk when I have split images? As we mentioned in our previous able_3 exercise, we can use
affuse to provide a fuse mounted full disk image for us. In this case, however, I don’t need
a full disk image except for the grep command. And since grep will take input from stdin
(through a pipe), why not just stream the images through a pipe to grep so they appear as a
single image - without a preliminary step? That is what we do here, searching for the same
term as we did before:

258

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

barry@forensicbox:able_3$ cat able_3.00*| grep -abi cybernetik

429415089:Cybernetik proudly presents...

429422127:Email: cybernetik@nym.alias.net

429422159:Finger: cybernetik@nym.alias.net

1632788547: *updated by Cybernetik for linux rootkit

2934551933:23140 Cybernetik.net

We use the cat command to stream our split files to grep for our search. This is no different
than reconstructing the file (creating a single image with cat >), but instead we just pass
the output of cat straight to grep. The command may take longer, and the keyword offsets
are obviously different than in able2 because this is a larger and different image. We are
going to concentrate on the same match we used for our able2 ext2 exercise. That would be
the keyword hit at 1632788547.

Remember our steps from here. We need to calculate the offset in sectors (divide by 512),
then calculate the offset to the volume we found the keyword in, and then subtract the
volume offset from the keyword offset to find the offset to the string in the volume. Make
sure we calculate using the correct block size for the file system. Remember we are working
with data blocks here. The ffstat command will give you the proper size for this file system.

We end up with the numbers below. Review the previous exercise if you have any questions
on the steps taken:

barry@forensicbox:able_3$ echo $((1632788547/512))

3189040

barry@forensicbox:able_3$ mmls able_3.000

GUID Partition Table (EFI)

Offset Sector: 0

Units are in 512-byte sectors

Slot Start End Length Description

000: Meta 0000000000 0000000000 0000000001 Safety Table

001: ------- 0000000000 0000002047 0000002048 Unallocated

002: Meta 0000000001 0000000001 0000000001 GPT Header

003: Meta 0000000002 0000000033 0000000032 Partition Table

004: 000 0000002048 0000104447 0000102400 Linux filesystem

005: 001 0000104448 0000309247 0000204800 Linux filesystem

006: ------- 0000309248 0000571391 0000262144 Unallocated

007: 002 0000571392 0008388574 0007817183 Linux filesystem

008: ------- 0008388575 0008388607 0000000033 Unallocated

barry@forensicbox:able_3$ fsstat -o 571392 able_3.000 | less

FILE SYSTEM INFORMATION

--

File System Type: Ext4

259

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

Volume Name:

Volume ID: dd9f5b9524f943aae944383ab248f7c7

...

CONTENT INFORMATION

--

Block Groups Per Flex Group: 16

Block Range: 0 - 977146

Block Size: 4096

Free Blocks: 557639

...

barry@forensicbox:able_3$ echo "(1632788547-(571392*512))/4096" | bc

327206

We’re ready to run our blkstat command to find out if our keyword hit is in a block assigned
to an allocated inode:

barry@forensicbox:able_3$ blkstat -o 571392 able_3.000 327206

Fragment: 327206

Not Allocated

Group: 9

So the block is unallocated. Let’s now see if we can find what inode this unallocated block
belonged to:

barry@forensicbox:able_3$ ifind -o 571392 -d 327206 able_3.000

Inode not found

And there’s our answer. The inode cannot be found. Again this is because the inodes in
ext4 that are unallocated have the direct block pointers deleted. The ifind command is
searching for a pointer to the data unit (-d 327206) in the inode table and cannot find one.

All is not lost, though. Instead of using icat to extract the data blocks pointed to by an
inode, we can instead use blkcat to directly stream the contents of a data block. Have a
look below. We’ll use blkcat and redirect to a file:

barry@forensicbox:able_3$ blkcat -o 571392 able_3.000 327206 > blk.327206

barry@forensicbox:able_3$ ls -l blk.327206

-rw-r--r-- 1 barry users 4096 Jul 30 07:31 blk.327206

Look at the file with cat or less. You’ll see it is the same file as the one we recovered from
able2. It has some garbage at the end, though. Why is that? Remember when we recovered
this same file from able2 with icat? icat had the information it needed to do a complete

260

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

recovery of the correct data. We don’t have that here, and all we did was stream ("block
cat") a single block of data (that we know is 4096 bytes from our fsstat output) and save
the whole thing. Remember our output from the able2 exercise prior to this (the below
commands are run in the able2 directory - note the command prompt):

barry@forensicbox:able2$ ls -l 10090.recover

-rw-r--r-- 1 barry users 3591 Jul 30 06:47 10090.recover

barry@forensicbox:able2$ md5sum 10090.recover

c3b01f91d3fa72b1b951e6d6d45c7d9a 10090.recover

The above is from the able2 disk image. Look at the size of the file. 3591 bytes. Now,
realistically we would not have this information available for us in a real exam, but just for
fun, let us see if we can make the files match using the size of the file from our able2 recovery
as a go-by. Since the file from able_3 is bigger, we can use dd to cut the correct data from
it. The file is currently 4096 bytes in size. We need it to be 3591 bytes:

barry@forensicbox:able_3$ dd if=blk.327206 bs=1 count=3591 > 327206.recover

3591+0 records in

3591+0 records out

3591 bytes (3.6 kB, 3.5 KiB) copied, 0.00413113 s, 869 kB/s

barry@forensicbox:able_3$ md5sum 327206.recover

c3b01f91d3fa72b1b951e6d6d45c7d9a 327206.recover

Compare the output of md5sum from 327206.recover with that of able2/10090.recover. Look
at that! The md5sum of the file we recovered from able2 with icat now matches the file we
recovered using blkcat in able_3. Again, not quite realistic, but it serves to illustrate exactly
what data we are getting and why. Hopefully there is some educational value for you there.

11.3.5 Sleuth Kit Exercise 3: Unallocated Extraction & Examination

As the size of media being examined continues to grow, it is becoming apparent to many
investigators that data reduction techniques are more important than ever. These techniques
take on several forms, including hash analysis (removing known "good" files from a data set,
for example) and separating allocated space in an image from unallocated space, allowing
them to be searched separately with specialized tools. We will be doing the latter in this
exercise.

The blkcat command we used earlier is a member of the Sleuth Kit set of tools for handling
information at the "block" layer of the analysis model. The block layer consists of the
actual file system blocks that hold the information we are seeking. They are not specific to
unallocated data only, but are especially useful for working on unallocated blocks that have

261

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

been extracted from an image. The tools that manipulate this layer, as you would expect,
start with blk and include:

blkls

blkcalc

blkstat

blkcat

We will be focusing on blkls, blkcalc and blkstat for the next couple of exercises.

The tool that starts us off here is blkls. This command "lists all the data blocks". If you
were to use the -e option, the output would be the same as the output of dd for that volume,
since -e tells blkls to copy every block. However, by default, blkls will only copy out the
unallocated blocks of an image.

This allows us to separate allocated and unallocated blocks in our file system. We can use
logical tools (find, ls, etc.) on the "live" files in a mounted file system, and concentrate
data recovery efforts on only those blocks that may contain deleted or otherwise unallocated
data. Conversely, when we do a physical search of the output of blkls, we can be sure that
artifacts found are from unallocated content.

To illustrate what we are talking about here, we’ll run the same exercise we did in TSK
Exercise #2A, this time extracting the unallocated data from our volume of interest and
comparing the output from the whole volume analysis vs. just unallocated analysis. So,
we’ll be working on the able2.dd image. We expect to get the same results we did in
Exercise #2A, but this time by analyzing only the unallocated space, and then associating
the recovered data with its original location in the full disk image.

First we’ll need to change into the directory containing our able2.dd image. Then we check
the partition table and decide which volume we’ll be examining so we know the -o (offset)
value for our Sleuth Kit commands. To do this, we run the mmls command as before:

barry@forensicbox:~$ cd able2

barry@forensicbox:able2$ mmls able2.dd

DOS Partition Table

Offset Sector: 0

Units are in 512-byte sectors

Slot Start End Length Description

000: Meta 0000000000 0000000000 0000000001 Primary Table (#0)

001: ------- 0000000000 0000000056 0000000057 Unallocated

002: 000:000 0000000057 0000010259 0000010203 Linux (0x83)

003: 000:001 0000010260 0000112859 0000102600 Linux (0x83)

004: 000:002 0000112860 0000178694 0000065835 Linux Swap / Solaris x86 (0

↪→ x82)

005: 000:003 0000178695 0000675449 0000496755 Linux (0x83)

262

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

As with Exercise #2, we’ve decided to search the unallocated space in the second Linux
partition (at offset 10260, in bold above).

We run the blkls command using the offset option -o which indicates what partition’s file
system we are exporting the unallocated space from. We then redirect the output to a new
file that will contain only the unallocated blocks of that particular volume.

barry@forensicbox:able2$ blkls -o 10260 able2.dd > able2.blkls

barry@forensicbox:able2$ ls -lh able2.blkls

-rw-r--r-- 1 barry users 9.3M Jul 30 09:37 able2.blkls

In the above command, we are using blkls on the second partition (-o 10260) within the
able2.dd image, and redirecting the output to a file called able2.blkls. The file able2.blkls

will contain only the unallocated blocks from the target file system. In this case we end up
with a file that is 9.3M in size.

Now, as we did in our previous analysis of this file system (Exercise #2) we will use grep, this
time on the extracted unallocated space, our able2.blkls file, to search for our text string
of interest. Read back through Exercise #2 if you need a refresher on these commands.

barry@forensicbox:able2$ grep -abi cybernetik able2.blkls

1631299: * updated by Cybernetik for linux rootkit

9317041:Cybernetik proudly presents...

9323055:Email: cybernetik@nym.alias.net

9323087:Finger: cybernetik@nym.alias.net

The grep command above now tells us that we have found the string cybernetik at four
different offsets in the extracted unallocated space. We will concentrate on the first hit. Of
course these are different from the offsets we found in Exercise #2 because we are no longer
searching the entire original image.

So the next obvious question is "so what?". We found potential evidence in our extracted
unallocated space. But how does it relate to the original image? As forensic examiners,
merely finding potential evidence is not good enough. We also need to know where it came
from: physical location in the original image, what file it belongs or (possibly) belonged to,
meta data associated with the file, and context. Finding potential evidence in a big block
of aggregate unallocated space is of little use to us if we cannot at least make some effort at
attribution in the original file system.

That’s where the other block layer tools come in. We can use blkcalc to calculate the
location (by data block or fragment) in our original image. Once we’ve done that, we simply

263

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

use the meta data layer tools to identify and potentially recover the original file, as we did
in our previous effort.

First we need to gather a bit of data about the original file system. We run the fsstat

command to determine the size of the data blocks we are working with. We’ve done this a
number of times already, but the repetition is useful to drive home the importance of this
information.

barry@forensicbox:able2$ fsstat -o 10260 able2.dd | less

FILE SYSTEM INFORMATION

--

File System Type: Ext2

Volume Name:

Volume ID: 906e777080e09488d0116064da18c0c4

...

CONTENT INFORMATION

--

Block Range: 0 - 51299

Block Size: 1024

...

In the fsstat command above, we see that the block size (in bold) is 1024. We take the
offset from our grep output on the able2.blkls image and divide that by 1024. This tells
us how many unallocated data blocks into the unallocated image we found our string of
interest. As usual, we use the echo command to pass the math expression to the command
line calculator, bc:

barry@forensicbox:able2$ echo "1631299/1024" | bc

1593

We now know, from the above output, that the string cybernetik is in data block 1593 of
our extracted unallocated file, able2.blkls.

This is where our handy blkcalc command comes in. We use blkcalc with the -u option to
specify that we want to calculate the block address from an extracted unallocated image (from
blkls output). We run the command on the original dd image because we are calculating
the original data block in that image. The question we are answering here is "What data
block in the original image is unallocated block 1593?".

barry@forensicbox:able2$ blkcalc -o 10260 -u 1593 able2.dd

5184

The command above is running blkcalc on the file system at offset 10260 (-o 10260) in the
original able2.dd, passing the data block we calculated from the blkls image able2.blkls

264

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

(-u 1593). The result is a familiar block 5184 (see Exercise #2A again). The illustration
below gives a visual representation of a simple example: In the illustrated example above,

Figure 20: A simple example of how blkcalc is used to determine the original address of an
unallocated data unit

the data in block 3 of the blkls image would map to block 49 in the original file system. We
would find this with the blkcalc command as shown in the figure.

So, in simple terms, we have extracted the unallocated space, found a string of interest in
a data block in the unallocated image, and then found the corresponding data block in the
original image.

If we look at the blkstat (data block statistics) output for block 5184 in the original image, we
see that it is, in fact unallocated, which makes sense, since we found it within our extracted
unallocated space (we’re back to the same results as in Exercise #2A). Note that we are
now running the commands on the original dd image. We’ll continue on for the sake of
completeness. And because it’s good practice...

barry@forensicbox:able2$ blkstat -o 10260 able2.dd 5184

Fragment: 5184

Not Allocated

Group: 0

Using the command blkcat we can look at the raw contents of the data block (using xxd and
less as a viewer). If we want to, we can even use blkcat to extract the block, redirecting

265

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

the contents to another file, just as we did in exercise #2B with our ext4 file system image.

If we want to recover the actual file and meta data associated with the identified data block,
we use ifind to determine which meta data structure (in this case inode since we are working
on an EXT file system) holds the data in block 5184. Then istat shows us the meta data
for the inode:

barry@forensicbox:able2$ ifind -o 10260 -d 5184 able2.dd

10090

barry@forensicbox:able2$ istat -o 10260 able2.dd 10090

inode: 10090

Not Allocated

Group: 5

Generation Id: 3534950782

uid / gid: 4 / 7

mode: rrw-r--r--

size: 3591

num of links: 0

Inode Times:

Accessed: 2003-08-10 00:18:36 (EDT)

File Modified: 1996-12-25 16:27:43 (EST)

Inode Modified: 2003-08-10 00:29:58 (EDT)

Deleted: 2003-08-10 00:29:58 (EDT)

Direct Blocks:

5184 5185 5186 5187

Again, as we saw previously, the istat command, which shows us the meta data for inode
10090, indicates that the file with this inode is Not Allocated, and its first direct block is
5184. Just as we expected.

We then use icat to recover the file. In this case, we just pipe the first few lines out to see
our string of interest, cybernetik.

barry@forensicbox:able2$ icat -o 10260 able2.dd 10090 | head -n 10

/*

* fixer.c

* by Idefix

* inspired on sum.c and SaintStat 2.0

* updated by Cybernetik for linux rootkit

*/

#include <sys/types.h>

#include <sys/stat.h>

266

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

#include <sys/time.h>

11.3.6 SleuthKit Exercise 4: NTFS Examination - File Analysis

At this point we’ve done a couple of intermediate exercises using ext2 and ext4 file systems
from Linux disk images. In the following exercises we will do some simple analyses on an
NTFS file system. This is one of the more common file system you are likely to find when it
comes to personal and enterprise computers today.

Some might ask, "why?" There are many tools out there capable of analyzing an NTFS file
system in its native environment. In my mind there are two very good reasons for learning to
apply the Sleuth Kit on Windows file systems. First, the Sleuth Kit is comprised of a number
of separate tools with very discrete sets of capabilities. The specialized nature of these tools
means that you have to understand their interaction with the file system being analyzed.
This makes them especially suited to help learning the ins and outs of file system behavior.
The fact that the Sleuth Kit does less of the work for you makes it a great learning tool.
Second, an open source tool that operates in an environment other than Windows makes for
an excellent cross-verification utility.

The following exercise demonstrates a set of very basic steps useful in most any analysis.
Make sure that you follow along at the command line. Experimentation is the best way to
learn.

If you have not already done so, I would strongly suggest (again) that you invest in a copy of
Brian Carrier’s book: File System Forensic Analysis (Published by Addison-Wesley, 2005).
This book is the definitive guide to file system behavior for forensic analysts. As a reminder
(again), the purpose of these exercises in NOT to teach you file systems or forensic methods,
but rather to illustrate and introduce the detailed information TSK can provide on common
file systems encountered by field examiners.

For these exercises that follow, we’ll be using the NTFS_Pract_2017.E01 set of files we down-
loaded and used for our libewf sections earlier. Since these are EWF files, and we have
support for libewf built into TSK, we’ll work directly from those files. If you have not
already done so, download the NTFS EWF files, extract the archive and let’s begin.

barry@forensicbox:~$ wget http://www.linuxleo.com/Files/NTFS_Pract_2017_E01.tar.gz

...

barry@forensicbox:~$ tar tzf NTFS_Pract_2017_E01.tar.gz

...

barry@forensicbox:~$ tar xzvf NTFS_Pract_2017_E01.tar.gz

NTFS_Pract_2017/

NTFS_Pract_2017/NTFS_Pract_2017.E04

NTFS_Pract_2017/NTFS_Pract_2017.E02

NTFS_Pract_2017/NTFS_Pract_2017.E01

267

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

NTFS_Pract_2017/NTFS_Pract_2017.E03

barry@forensicbox:~$ cd NTFS_Pract_2017

We will start by running through a series of basic Sleuth Kit commands as we would in any
analysis. The structure of the forensic image is viewed using mmls:

barry@forensicbox:NTFS_Pract_2017$ mmls NTFS_Pract_2017.E01

DOS Partition Table

Offset Sector: 0

Units are in 512-byte sectors

Slot Start End Length Description

000: Meta 0000000000 0000000000 0000000001 Primary Table (#0)

001: ------- 0000000000 0000002047 0000002048 Unallocated

002: 000:000 0000002048 0001023999 0001021952 NTFS / exFAT (0x07)

The output shows that an NTFS partition (and most likely the file system) begins at sector
offset 2048. This is the offset we will use in all our Sleuth Kit commands. We now use fsstat

to have a look at the file system statistics inside that partition:

barry@forensicbox:NTFS_Pract_2017$ fsstat -o 2048 NTFS_Pract_2017.E01 | less

FILE SYSTEM INFORMATION

--

File System Type: NTFS

Volume Serial Number: CAE0DFD2E0DFC2BD

OEM Name: NTFS

Volume Name: NTFS_2017d

Version: Windows XP

METADATA INFORMATION

--

First Cluster of MFT: 42581

First Cluster of MFT Mirror: 2

Size of MFT Entries: 1024 bytes

Size of Index Records: 4096 bytes

Range: 0 - 293

Root Directory: 5

CONTENT INFORMATION

--

Sector Size: 512

Cluster Size: 4096

...

268

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

Looking at the fsstat output on our NTFS file system, we see it differs greatly from the
output we saw running on a Linux EXT file system. The tool is designed to provide pertinent
information based on the file system being targeted. Notice that when run on an NTFS file
system, fsstat provides us with information specific to NTFS, including data about the
Master File Table (MFT) and specific attribute values.

We will now have a look at how the Sleuth Kit interacts with active and deleted files on an
NTFS file system. Let’s first run fls on just the root level directory of our image:

barry@forensicbox:NTFS_Pract_2017$ fls -o 2048 NTFS_Pract_2017.E01

r/r 4-128-4: $AttrDef

r/r 8-128-2: $BadClus

r/r 8-128-1: $BadClus:$Bad

r/r 6-128-4: $Bitmap

r/r 7-128-1: $Boot

d/d 11-144-4: $Extend

r/r 2-128-1: $LogFile

r/r 0-128-6: $MFT

r/r 1-128-1: $MFTMirr

r/r 9-128-8: $Secure:$SDS

r/r 9-144-11: $Secure:$SDH

r/r 9-144-14: $Secure:$SII

r/r 10-128-1: $UpCase

r/r 10-128-4: $UpCase:$Info

r/r 3-128-3: $Volume

r/r 38-128-1: ProxyLog1.log

d/d 35-144-1: System Volume Information

d/d 64-144-2: Users

d/d 67-144-2: Windows

V/V 293: $OrphanFiles

Note that fls displays far more information for us than normal directory listings for NTFS.
Included with our regular files and directories are the NTFS system files (starting with the
$), including the $MFT and $MFTMIRROR (record numbers 0 and 1). If you look at the
MFT numbers, you will see that for some reason record number 5 is missing. MFT record
5 is the root directory, which is what we are displaying here. Just as the default display for
EXT file systems with fls is inode 2, the default for NTFS is MFT record 5.

You can dig deeper and deeper into the file system by providing fls with a directory MFT
record and it will display the contents of that directory. For illustration, re run the command
(use the up arrow and edit the previous command) with the MFT record 64 (the Users

directory):

barry@forensicbox:NTFS_Pract_2017$ fls -o 2048 NTFS_Pract_2017.E01 64

d/d 65-144-2: AlbertE

d/d 66-144-2: ElsaE

269

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

You can delve deep into each directory this way. This is one way to "browse" the file system
with fls.

We can also specify that fls only show us only "deleted" content on the command line with
the -d option. We will use -F (only file entries) and -r (recursive) as well:

barry@forensicbox:NTFS_Pract_2017$ fls -o 2048 -Frd NTFS_Pract_2017.E01

-/r * 40-128-1: Users/AlbertE/Documents/Credit Report.pdf

-/r * 40-128-3: Users/AlbertE/Documents/Credit Report.pdf:Zone.Identifier

r/- * 0: Users/AlbertE/Documents/ManProj/World’s First Atomic Bomb - Manhattan

↪→ Project Documentary - Films - YouTube.url

-/r * 236-128-2: Users/AlbertE/Documents/ManProj/MMManhattan Project.docx

-/r * 237-128-2: Users/AlbertE/Documents/ManProj/The Manhattan Project - YouTube

↪→ .url

-/r * 238-128-2: Users/AlbertE/Documents/ManProj/World’s First Atomic Bomb -

↪→ Manhattan Project Documentary - Films - YouTube.url

-/r * 239-128-2: Users/AlbertE/Documents/ManProj/manhattan_project.zip

-/r * 248-128-2: Users/AlbertE/Documents/cyberbullying_by_proxy.doc

r/- * 0: Users/AlbertE/Pictures/Tails/Thumbs.db

r/r * 221-128-2: Users/AlbertE/Pictures/Tails/Thumbs.db

-/r * 216-128-2: Users/AlbertE/Pictures/Tails/BigBikeBH1017.jpg

-/r * 217-128-2: Users/AlbertE/Pictures/Tails/BigBikeSoloCBR900SC33.jpg

-/r * 218-128-2: Users/AlbertE/Pictures/Tails/BigBikeTailBandit.jpg

-/r * 219-128-2: Users/AlbertE/Pictures/Tails/GemoTailG4.jpg

-/r * 220-128-2: Users/AlbertE/Pictures/Tails/GemoTailUniversal.jpg

r/- * 0: Windows/Prefetch/EXPLORER.EXE-A80E4F97.pf

r/- * 0: Windows/Prefetch/MAINTENANCESERVICE.EXE-28D2775E.pf

r/- * 0: Windows/Prefetch/RUNDLL32.EXE-411A328D.pf

d/- * 0: Windows/System32

-/r * 167-128-2: Windows/Drop Location 2.kml

-/r * 168-128-2: Windows/Drop location 1.kml

-/r * 169-128-2: Windows/Meeting place.kml

-/r * 170-128-2: Windows/Nums_to_use.txt

-/r * 171-128-2: Windows/mycase.jpg

-/r * 172-128-2: Windows/mycase.jpg_original

-/r * 173-128-2: Windows/pickup location.kml

The output above shows that our NTFS example file system holds a number of deleted files
in several directories. Let’s have a closer look at some NTFS specific information that can
be parsed with TSK tools.

Have a look at the deleted file at MFT entry 216. The file is Users/AlbertE/Pictures/Tails

↪→ /BigBikeBH1017.jpg. We can have a closer look at the file’s attributes by examining its
MFT entry directly with istat. Recall that when we were working on an EXT file system

270

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

previously, the output of istat gave us information directly from the inode of the specified
file (see Sleuth Kit Exercise #1). So let’s run the command on MFT entry 216 in our current
exercise:

barry@forensicbox:NTFS_Pract_2017$ istat -o 2048 NTFS_Pract_2017.E01 216

MFT Entry Header Values:

Entry: 216 Sequence: 2

$LogFile Sequence Number: 4199136

Not Allocated File

Links: 1

$STANDARD_INFORMATION Attribute Values:

Flags: Archive

Owner ID: 0

Security ID: 0 ()

Created: 2017-05-01 09:04:42.810747600 (EDT)

File Modified: 2006-10-14 10:41:41.158486000 (EDT)

MFT Modified: 2017-05-01 09:04:42.818945100 (EDT)

Accessed: 2017-05-01 09:04:42.818865600 (EDT)

$FILE_NAME Attribute Values:

Flags: Archive

Name: BigBikeBH1017.jpg

Parent MFT Entry: 186 Sequence: 1

Allocated Size: 61440 Actual Size: 59861

Created: 2017-05-01 09:04:42.810747600 (EDT)

File Modified: 2006-10-14 10:41:41.158486000 (EDT)

MFT Modified: 2017-05-01 09:04:42.818865600 (EDT)

Accessed: 2017-05-01 09:04:42.818865600 (EDT)

Attributes:

Type: $STANDARD_INFORMATION (16-0) Name: N/A Resident size: 48

Type: $FILE_NAME (48-4) Name: N/A Resident size: 100

Type: $SECURITY_DESCRIPTOR (80-1) Name: N/A Resident size: 80

Type: $DATA (128-2) Name: N/A Non-Resident size: 59861 init_size: 59861

91473 91474 91475 91476 91477 91478 91479 91480

91481 91482 91483 91484 91485 91486 91487

The information istat provides us from the MFT shows values directly from the
$STANDARD_INFORMATION attribute (which contains the basic meta data for a file) as well as
the $FILE_NAME attribute and basic information for other attributes that are part of an MFT
entry. The data blocks that contain the actual file content are listed at the bottom of the
output (for Non-Resident data).

Take note of the fact that there is a separate attribute identifier for the $FILE_NAME attribute,
48-4. It is interesting to note we can access the contents of each attribute separately using

271

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

the icat command (more on this later).

The 48-4 attribute stores the file name. By piping the output of icat to xxd we can see
the contents of this attribute, allowing us to view individual attributes for each MFT entry.
By itself, this may not be of much investigative interest in this particular instance, but you
should understand that attributes can be accessed separately by providing the full attribute
identifier.

barry@forensicbox:NTFS_Pract_2017$ icat -o 2048 NTFS_Pract_2017.E01 216-48-4 |
xxd

00000000: ba00 0000 0000 0100 d486 cd7f 7bc2 d201{...

00000010: 5cef 99dc 9eef c601 f0c3 ce7f 7bc2 d201 \...........{...

00000020: f0c3 ce7f 7bc2 d201 00f0 0000 0000 0000{...........

00000030: d5e9 0000 0000 0000 2000 0000 0000 0000

00000040: 1100 4200 6900 6700 4200 6900 6b00 6500 ..B.i.g.B.i.k.e.

00000050: 4200 4800 3100 3000 3100 3700 2e00 6a00 B.H.1.0.1.7...j.

00000060: 7000 6700 p.g.

The same idea is extended to other attributes of a file, most notably the "alternate data
stream" or ADS. By showing us the existence of multiple attribute identifiers for a given
file, the Sleuth Kit gives us a way of detecting potentially hidden data. We cover this in our
next exercise.

11.3.7 Sleuth Kit Exercise 5: NTFS Examination of ADS

The NTFS file system allows for alternate data streams (ADS) - meaning a file in NTFS
can have separate content that is not normally viewable with applications meant to display
a given file type.

Obviously, when examining a system, it may be useful to get a look at all of the files contained
in an image. We can do this two ways. We could simply loop mount our image and get a
file listing. Or, we could use a forensic utility like TSK. We will compare the output here to
illustrate an important difference, even with live (allocated) content.

Remember that the mount command works on file systems, not disks. The file system in this
image starts 2048 sectors into the image, so we mount using an offset. Since we are also
examining an EWF image, we’ll need to use ewfmount to fuse mount the image file. We will
accomplish this as root (and if it does not exist already, make sure you create /mnt/ewf):

barry@forensicbox:NTFS_Pract_2017$ su -

Password:

root@forensicbox:~# cd barry/NTFS_Pract_2017

272

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

root@forensicbox:NTFS_Pract_2017# ewfmount NTFS_Pract_2017.E01 /mnt/ewf

ewfmount 20140806

root@forensicbox:NTFS_Pract_2017# mount -o ro,loop,offset=$((2048*512))
/mnt/ewf/ewf1 /mnt/evid

root@forensicbox:NTFS_Pract_2017# ls /mnt/evid

ProxyLog1.log* System\ Volume\ Information/ Users/ Windows/

root@forensicbox:NTFS_Pract_2017# exit

logout

barry@forensicbox:NTFS_Pract_2017$

In the above set of commands, we su to root, use ewfmount to mount the EWF image on
/mnt/ewf as /mnt/ewf/ewf130. We then mount the data partition (which we know is at offset
2048 from our previous exercise) and then exit.

We can then obtain a simple list of files using the find command:

barry@forensicbox:NTFS_Pract_2017$ find /mnt/evid/ -type f

/mnt/evid/ProxyLog1.log

/mnt/evid/System Volume Information/IndexerVolumeGuid

/mnt/evid/System Volume Information/WPSettings.dat

/mnt/evid/Users/AlbertE/Documents/better_access_unix.txt

/mnt/evid/Users/AlbertE/Documents/books.txt

/mnt/evid/Users/AlbertE/Documents/cable.txt

/mnt/evid/Users/AlbertE/Documents/cabletv.txt

/mnt/evid/Users/AlbertE/Documents/hackcabl.txt

The find command, starts at the mount point (/mnt/evid), looking for all regular files
(type -f). The result gives us a very long list of all the allocated regular files on the mount
point. That’s quite a lot of files, so for the sake of this exercise let’s just look at the contents of
the user Albert’s Pictures directory (use the same command, but grep for AlbertE/Pictures):

barry@forensicbox:NTFS_Pract_2017$ find /mnt/evid/ -type f | grep
"AlbertE/Pictures"

/mnt/evid/Users/AlbertE/Pictures/b45ac806a965017dd71e3382581c47f3_refined.jpg

/mnt/evid/Users/AlbertE/Pictures/bankor1.jpg

/mnt/evid/Users/AlbertE/Pictures/desktop.ini

/mnt/evid/Users/AlbertE/Pictures/fighterama2005-ban3.jpg

/mnt/evid/Users/AlbertE/Pictures/jet.mpg <Pay attention to this one

/mnt/evid/Users/AlbertE/Pictures/pvannorden2.jpg

...

30You can use ewfmount as a normal user, but in this case we need to be root to loop mount anyway.

273

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

Of particular interest in this output is jet.mpg. Take note of this file. Our current method
of listing files, however, gives us no indication of why this file is noteworthy.

The output of the file command shows us the expected file type. It is an MPEG video.
You can play the video with the mplayer command from the command line to view it if you
like.

barry@forensicbox:NTFS_Pract_2017$ file /mnt/evid/Users/AlbertE/Pictures/jet.mpg

/mnt/evid/Users/AlbertE/Pictures/jet.mpg: MPEG sequence, v1, progressive Y’CbCr

↪→ 4:2:0 video, CIF NTSC, NTSC 4:3, 29.97 fps, Constrained

barry@forensicbox:NTFS_Pract_2017$ mplayer /mnt/evid/Users/AlbertE/Pictures/jet.mpg

<video plays>

Playing /mnt/evid/Users/AlbertE/Pictures/jet.mpg.

libavformat version 56.40.101 (internal)

MPEG-ES file format detected.

...

At this point we are finished with the mount point and the fuse mounted image. Keeping
track of mounted disks and partitions, and properly unmounting them before you forget is
an important part of this process:

barry@forensicbox:NTFS_Pract_2017$ su -

Password:

root@forensicbox:~# umount /mnt/evid && fusermount -u /mnt/ewf

root@forensicbox:~# exit

logout

We can unmount both the /mnt/evid file system and the fuse disk image at /mnt/ewf on the
same line by separating with the &&. This means that the second command (fusermount)
will only execute if the first umount is successful.

Back to our problem...To see why the file jet.mpg is interesting, let’s try another method of
obtaining a file list, the fls command. We can use the -F option to look only at files, and
-r to do it recursively. We’ll also grep for jet.mpg. You could use the directory MFT record
numbers to browse down to the file, but this is quicker and more efficient:

barry@forensicbox:NTFS_Pract_2017$ fls -o 2048 -Fr NTFS_Pract_2017.E01 | grep
jet.mpg

r/r 39-128-1: Users/AlbertE/Pictures/jet.mpg

r/r 39-128-3: Users/AlbertE/Pictures/jet.mpg:unixphreak.txt

274

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

In the output of fls, jet.mpg has two entries:

39-128-1

39-128-3

Both entries have the same MFT record number (39) and are identified as file data (39-128)
but the attribute identifier increments are different. This is an example of an alternate data
stream. Accessing the standard contents (39-128-1) of jet.mpg is easy, since it is an allocated
file. However, we can access either data stream, the normal data or the ADS, by using the
Sleuth Kit command icat, much as we did with the files in our previous exercises. We simply
call icat with the complete MFT record entry, to include the alternate attribute identifier.
Here we specify each of the data streams and send them to the file command using icat:

barry@forensicbox:NTFS_Pract_2017$ icat -o 2048 NTFS_Pract_2017.E01 39 | file -

/dev/stdin: MPEG sequence, v1, progressive Y’CbCr 4:2:0 video, CIF NTSC, NTSC 4:3,

↪→ 29.97 fps, Constrained

In this first (default) stream, we simply use the MFT record 39 to pass the default data to
file. For the second stream, we pass the full attribute (39-128-3):

barry@forensicbox:NTFS_Pract_2017$ icat -o 2048 NTFS_Pract_2017.E01 39-128-3 |
file -

/dev/stdin: ASCII text, with CRLF line terminators

This time we see it is ASCII text. So now we can just pipe the same command to less (or
just straight to stdout) to view:

barry@forensicbox:NTFS_Pract_2017$ icat -o 2048 NTFS_Pract_2017.E01 39-128-3 | less

+---+

:PHAphaPHAphaPHAphaPHAphaPHAphaPHAphaPHAphaPHAphaPHAphaPHAphaPHAphaPHAphaPHA:

:pha+---+pha:

:PHA: Phreakers/Hackers/Anarchists Present: :PHA:

:pha: =+= :pha:

:PHA: +=+ Gaining Better Access On Any Unix System +=+ :PHA:

:pha: =+= :pha:

:PHA: Written By Doctor Dissector (doctord@darkside.com) UPDT: 1/8/91 :PHA:

:pha+---+pha:

:PHAphaPHAphaPHAphaPHAphaPHAphaPHAphaPHAphaPHAphaPHAphaPHAphaPHAphaPHAphaPHA:

+---+

+---+

:=[Disclaimer]==:

+---+

The author and the sponsor group Phreakers/Hackers/Anarchists will not be held

responsible for any actions done by anyone reading this material before,

275

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

during, and after exposure to this document. This document has been

released under the notion that the material presented herin is for

informational purposes only, and that neither the author nor the group

P/H/A encourage the use of this information for any type of illegal

purpose. Thank you.

And here we’ve displayed our NTFS alternate data stream, a text file.

11.3.8 Sleuth Kit Exercise 6: Physical String Search & Allocation Status (NTFS)

We’ve already done a few string search exercises, but all of them have been on EXT file
systems. We make a lot of assumptions when we search for simple strings in an image. We
assume the strings will be accessible (not in a container that requires pre-processing), and
we assume they will be in a character encoding that our search utility will find. This is not
always the case. Most of the string searches we’ve done thus far have resulted in matches
that are found in regular ASCII text files. When we search for strings in documents on
Windows systems, for example, that won’t always be the case. We’ll need to deal with more
control characters, and additional application overhead and considerations, like compressed
and encoded formats.

This exercise still simplifies some of that, but it also serves to make you aware of some of
the more complex issues that may arise when searching larger images with more complex
content. It will also introduce us to some basic application level file viewers beyond those
we’ve already seen. The scenario here is the same as previous exercises. We’ll pick a keyword,
search the entire disk, and then recover and view the associated file. It will be very similar
to the EXT exercises we did earlier (2A and 2B). This time, however, NTFS is our target
file system.

Once again, we are dealing with the NTFS_Pract_2017.E01 image set. And, again, since we
are doing a physical search using non-EWF aware tools, we’ll ewfmount the images and work
on the raw fuse mounted disk image. This time we create a mount point in our current
directory and use ewfmount with our normal user account...no need for loop devices and root
permissions:

barry@forensicbox:NTFS_Pract_2017$ mkdir ewfmnt

barry@forensicbox:NTFS_Pract_2017$ ewfmount NTFS_Pract_2017.E01 ewfmnt/

ewfmount 20140806

The grep command points to the fuse mounted image in ewfmnt/. Since ewfmnt is in our
current directory (we just created it here), there is no need for a leading /.

barry@forensicbox:NTFS_Pract_2017$ grep -abi cyberbullying ewfmnt/ewf1

276

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

<unreadable text and characters>

When we execute our search, we are greeted with a significant number of non-ASCII charac-
ters that seriously impede the readability of the output. When you scroll down the output,
you can see the string we are looking for, but the offsets are obscured.

Back in our forensic basics section, early in this document, we discussed using the tr com-
mand to translate "control characters" to newlines. This has the effect of removing much of
the unreadable content from our view as well as from the grep search, while the one for one
character replacement causes no issue for offset calculations. Use tr here:

barry@forensicbox:NTFS_Pract_2017$ tr ’[:cntrl:]’ ’\n’ < ewfmnt/ewf1 | grep -abi
cyberbullying

426596865:www.stopcyberbullying.org

426596971:Cyberbullying by proxy

426596995:Cyberbullying by proxy is when a cyberbully gets someone

else to do their dirty work. Most of the time they are unwitting

accomplices and don’t know that they are being used by the

cyberbully. Cyberbullying by proxy is the most dangerous kind of

cyberbullying because it often gets adults involve in the harassment

and people who don’t know they are dealing with a kid or someone

they know.

...

The command above uses tr to convert the set of control characters (’[:cntrl:]’) to newlines
(’\n’). The input is taken from ewfmnt/ewf1,and then the resulting stream is piped through
grep to our search with the usual -abi options to treat it like a text file (a), provide the byte
offset (b) and make the search case insensitive (i). The output shows our offsets and string
hits are now much more readable.

Now we run through the same set of commands we did previously. Calculating what sector
the keyword is in, the offset within the volume, and finally which data block and meta-data
entry is associated with the keyword hit.

We’ll work with the first keyword hit (426596865:www.stopcyberbullying.org - highlighted
above). The sector offset to our hit is found by dividing the byte offset by the sector size
(512). We already know that there is only one partition in this image, but we’ll run mmls

just to be sure. We also run fsstat again to confirm the block size (which we already know
from previous exercises is 4096 bytes). Repeating these steps is just good practice:

barry@forensicbox:NTFS_Pract_2017$ echo "426596865/512" | bc

833197

barry@forensicbox:NTFS_Pract_2017$ mmls NTFS_Pract_2017.E01

277

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

DOS Partition Table

Offset Sector: 0

Units are in 512-byte sectors

Slot Start End Length Description

000: Meta 0000000000 0000000000 0000000001 Primary Table (#0)

001: ------- 0000000000 0000002047 0000002048 Unallocated

002: 000:000 0000002048 0001023999 0001021952 NTFS / exFAT (0x07)

barry@forensicbox:NTFS_Pract_2017$ fsstat -o 2048 NTFS_Pract_2017.E01

FILE SYSTEM INFORMATION

--

File System Type: NTFS

Volume Serial Number: CAE0DFD2E0DFC2BD

...

CONTENT INFORMATION

--

Sector Size: 512

Cluster Size: 4096

...

As expected, the keyword is in the only NTFS partition which resides at offset 2048 (sectors).
We can complete the math and determine the block the keyword resides in all at once:

barry@forensicbox:NTFS_Pract_2017$ echo "(426596865-(2048*512))/4096" | bc

103893

For review, this reads: "Take our offset to the keyword in our disk (426596865), subtract
the offset to the start of the partition (2048*512), and divide the resulting value by our file
system block size (4096). Our file system block is 103893.

barry@forensicbox:NTFS_Pract_2017$ blkstat -o 2048 NTFS_Pract_2017.E01 103893

Cluster: 103893

Not Allocated

barry@forensicbox:NTFS_Pract_2017$ ifind -o 2048 -d 103893 NTFS_Pract_2017.E01

248-128-2

We can see that blkstat tells us the cluster (block) is Not Allocated, and ifind shows us
that the meta-data structure (MFT entry) associated with that data block (-d 103893) is
248-128-2.

barry@forensicbox:NTFS_Pract_2017$ icat -o 2048 NTFS_Pract_2017.E01 248 | file -

/dev/stdin: Composite Document File V2 Document, Little Endian, Os:

Windows, Version 5.1, Code page: 1252, Template: Normal, Last Saved

278

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

By: buckyball, Revision Number: 2, Name of Creating Application:

Microsoft Word 10.0, Last Printed: 02:05, Create Time/Date:

Tue Nov 21 21:41:00 1995, Last Saved Time/Date: Wed Oct 25 23:14:00

2006, Number of Pages: 2, Number of Words: 822, Number of

Characters: 4087, Security: 0

Piping our icat output through the file command shows us we have a Microsoft Word
document. Note that when we pass the MFT record to icat, we use only the record number,
248 rather than the entire attribute since we are looking for the default attribute anyway,
which is $DATA.

If we try and view the document with cat or less, we again get non-ASCII characters,
making reading difficult.

barry@forensicbox:NTFS_Pract_2017$ icat -o 2048 NTFS_Pract_2017.E01 248 | less

<unreadable text and characters>

We could use icat to redirect the contents to a file:

barry@forensicbox:NTFS_Pract_2017$ icat -o 2048 NTFS_Pract_2017.E01 248 > ntfs.248

From there we could view the file in an MS Word compatible application like LibreOffice for
Linux (which is not installed right now, but would look like this):

Figure 21: Screenshot of LibreOffice viewing a recovered MS Office Document

This is fine, but opening and closing GUI programs to view file contents is not ideal for our
command line approach. Instead, we can use a simple tool like antiword to read MS Office
files (.doc format) from the command line.

279

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

antiword can be installed via sboinstall on Slackware:

barry@forensicbox:NTFS_Pract_2017$ su -

Password:

root@forensicbox:~# sboinstall antiword

antiword is a free MS Word reader for Linux and RISC OS.

antiword converts the binary files from Word 2, 6, 7, 97, 2000,

2002 and 2003 to plain text and to PostScript TM .

Proceed with antiword? [y]

...

Cleaning for antiword-0.37...

root@forensicbox:~# exit

logout

Once installed, you can either open the file you exported (ntfs.248) with antiword, or you
can simply stream the output of icat straight through to antiword, and again through less

(multiple pipes are just awesome). Note that we need to use a ’-’ following antiword in the
command because antiword expects an input file argument.

barry@forensicbox:NTFS_Pract_2017$ icat -o 2048 NTFS_Pract_2017.E01 248-128-2 |
antiword - | less

www.stopcyberbullying.org

__

Cyberbullying by proxy

Cyberbullying by proxy is when a cyberbully gets someone else to do

their dirty work. Most of the time they are unwitting accomplices and

...

This exercise essentially closes the loop on our physical searching of file systems. As we can
see there can be a lot more to searching an image than simple grep strings.

Let’s leave with one more command, and a question. The fuse mounted image should still
be available at ewfmnt/ewf1. Do a quick keyword search for "Uranium-235" (sounds ominous,
doesn’t it?):

barry@forensicbox:NTFS_Pract_2017$ grep -abi "Uranium-235" ewfmnt/ewf1

<returns nothing>

280

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

The pattern "Uranium-235" does not appear to be found. Does this mean I’m free to draw
the conclusion that there are no instances of the string "Uranium-235" to be found on the
disk? Of course not. We’ll address this in our next exercise.

Be sure to unmount the fuse mounted image before you move on.

barry@forensicbox:NTFS_Pract_2017$ fusermount -u ewfmnt/

11.4 bulk_extractor - comprehensive searching

In previous exercises, we discussed issues where simple text based string searches might not
be effective depending on character encoding and file formats (compression, etc.). There are
a number of character set aware tools out there that we can use to overcome many of these
issues, but detailed descriptions of character encoding and searches are not what we are
aiming for here. Instead we are going to introduce a tool, bulk_extractor, that incorporates
some excellent multi-format searching capabilities with some other very useful functions.
bulk_extractor was created by Simson Garfinkel at the Naval Postgraduate School.

For those of you that have not already heard of or used bulk_extractor, it is one of those
tools that I very rarely don’t use on every case. Even where I have a targeted extraction
or analysis to perform, bulk_extractor can always find additional information or, at the
very least, provide an excellent overview of user activity or media context. It is particularly
useful in situations where you have been given (or acquired yourself) a high volume of media
and you want to quickly sort out the interesting data. This triage capability is one of the
highlights of bulk_extractor.

bulk_extractor differs from some other more common tools in that it runs and searches
completely independent of the file system. In this case, it’s not the files themselves that are
interesting, but the content – whether allocated or unallocated, whole or fragmented, or even
in compressed containers. bulk_extractor reads in the data by blocks, without regard to file
system structure, and recursively searches those blocks for interesting features. Recursive in
this case means the tool will, for example, decompress an archive to search the contents and
extract text from PDF files to be further processed.

A complete user’s manual for bulk_extractor is available at:

http://downloads.digitalcorpora.org/downloads/bulk_extractor/BEUsersManual.pdf

This manual is for an older version, but is still relevant.

Let’s install bulk_extractor now and have a closer look at the options.

root@forensicbox:~# sboinstall bulk_extractor

bulk_extractor is a C++ program that scans a disk image, a file, or a directory

281

http://downloads.digitalcorpora.org/downloads/bulk_extractor/BEUsersManual.pdf

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

of files and extracts useful information without parsing the file system or

file system structures...

...

The searches performed by bulk_extractor are done using specific scanners that can be
enabled and disabled depending on what you want to search for and how. It is these scanners
that manage the parsing of PDF files or compressed archives and other formats. We can get
a look at available scanners by viewing the output of bulk_extractor with -h. It’s a long
list of command options, so you might want to pipe the output through less:

barry@forensicbox:~$ bulk_extractor -h | less

bulk_extractor version 2.0.0: A high-performance flexible digital forensics program

↪→ .

Usage:

bulk_extractor [OPTION...] image_name

-A, --offset_add arg Offset added (in bytes) to feature locations (default:

↪→ 0)

-b, --banner_file arg Path of file whose contents are prepended to top of

↪→ all feature files

-C, --context_window arg Size of context window reported in bytes (default: 16)

-d, --debug arg enable debugging (default: 1)

-D, --debug_help help on debugging

-E, --enable_exclusive arg disable all scanners except the one specified. Same as

↪→ -x all -E scanner.

-e, --enable arg enable a scanner (can be repeated)

-x, --disable arg disable a scanner (can be repeated)

-f, --find arg search for a pattern (can be repeated)

-F, --find_file arg read patterns to search from a file (can be repeated)

-G, --pagesize arg page size in bytes (default: 16777216)

-g, --marginsize arg margin size in bytes (default: 4194304)

-j, --threads arg number of threads (default: 4)

-J, --no_threads read and process data in the primary thread

...

These scanners enabled; disable with -x:

-x accts - disable scanner accts

-S ssn_mode=0 0=Normal; 1=No ‘SSN’ required; 2=No dashes required

-S min_phone_digits=7 Min. digits required in a phone

-x aes - disable scanner aes

-S scan_aes_128=1 Scan for 128-bit AES keys; 0=No, 1=Yes

-S scan_aes_192=0 Scan for 192-bit AES keys; 0=No, 1=Yes

-S scan_aes_256=1 Scan for 256-bit AES keys; 0=No, 1=Yes

-x base64 - disable scanner base64

-x elf - disable scanner elf

-x email - disable scanner email

-x evtx - disable scanner evtx

282

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

-x exif - disable scanner exif

...

You can also get a slightly more descriptive output on the scanners by doing the same as
above but with -H instead of -h.

There are a lot of options to go through. Some we’ll cover as we go through a sample exercise,
and others we’ll skip over and allow you to explore on your own. The simplest way to run
bulk_extractor is to leave everything default and simply provide an output directory for
the results. This can take awhile, but it provides the best overall intelligence on the disk
contents. For now, we are going to reduce the output by limiting the scanners and providing
a single search term. This will allow us to isolate the results and spend some time talking
about the output files.

Some of the more important options to remember when running bulk_extractor are:

-o <output_dir> Directory to write the results (bulk_extractor will create this)

-e <scanner> Enable <scanner>

-E <scanner> Disable ALL scanners except <scanner>

-x <scanner> Disable <scanner>

The easiest way to explain the options is to run the command and check the output. We
ended the last section on NTFS physical string searching by doing a simple grep for the
term Uranium-235 in our NTFS E01 image set. The results returned nothing. Now we’ll run
the same search again using bulk_extractor. Run the command with the following options.
Note that bulk_extractor can run directly on the EWF files if libewf is installed:

barry@forensicbox:~$ bulk_extractor -E zip -e find -f "Uranium-235" -o blk_out
NTFS_Pract_2017/NTFS_Pract_2017.E01

bulk_extractor Fri Sep 9 13:39:41 2022

available_memory: 15691968512

bytes_queued: 113246208

depth0_bytes_queued: 113246208

depth0_sbufs_queued: 7

elapsed_time: 0:00:05

estimated_date_completion: 2022-09-09 13:39:41

estimated_time_remaining: 0:00:00

fraction_read: 100.000000 %

max_offset: 503316480

sbufs_created: 3088

sbufs_queued: 7

sbufs_remaining: 9

283

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

tasks_queued: 3

thread-1: 503316480: find (20971520 bytes)

thread-2: 469762048: find (20971520 bytes)

thread_count: 4

...

In the above command, we use -E zip to disable every default scanner except the zip scanner.
We then re-enable the find scanner with -e find (so that we can run our string search).This
is followed by the -f "Uranium-235" search term. This term can be a string or a regular
expression. We can also add additional terms or create a search term file (with a list of
keywords or expressions) and run it with the -F option. Our output directory is set with
-o blk_out (which bulk_extractor will create for us).

The command provides some fairly self-explanatory information, including the data pro-
cessed and the hash of the disk image. Change into the output directory and let’s have a
look at the files that were produced.

barry@forensicbox:~$ cd blk_out

barry@forensicbox:bulk_out$ ls -l

total 556

-rw-r--r-- 1 barry users 0 Sep 9 13:39 alerts.txt

-rw-r--r-- 1 barry users 247 Sep 9 13:39 find.txt

-rw-r--r-- 1 barry users 190 Sep 9 13:39 find_histogram.txt

-rw-r--r-- 1 barry users 8360 Sep 9 13:39 report.xml

drwxr-xr-x 3 barry users 4096 Sep 9 13:39 zip/

-rw-r--r-- 1 barry users 542857 Sep 9 13:39 zip.txt

There are basically three different files shown in the output above. These are:

• Feature files: Files that contain the output of each scanner.

• Histogram files: Files that show the frequency that each item in a feature file is en-
countered. We’ll discuss the usefulness of these in more detail later.

• The report file: A DFXML formatted report of the output and environment.

Any files that are 0 size are empty and no features were noted. In this case the alerts.txt

file is empty because we did not specify an alert file with the -r option. The feature file we
are concerned with here is the find.txt, produced by the find scanner. Open and have a
look at this file:

barry@forensicbox:bulk_out$ cat find.txt

BANNER FILE NOT PROVIDED (-b option)

BULK_EXTRACTOR-Version: 2.0.0

284

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

Feature-Recorder: find

Filename: NTFS_Pract_2017/NTFS_Pract_2017.E01

Feature-File-Version: 1.1

445901295-ZIP-9745 Uranium-235 ference between Uranium-235 and Uranium-238

The find.txt file has a commented area (lines starting with #), and the actual output of the
scanner itself, with each "feature" found on one line. There are three parts to the scanner
output for each feature. The first is an offset. This offset can have multiple parts. In
bulk_extractor this is referred to as the forensic path. This includes a disk offset to the data
containing the feature, the scanner(s) that found the object, and then the offset within that
data. The forensic path is followed by the feature itself, in this case our "Uranium-235" search
term. Finally we are given a small bit of context. In other words, for our example above:

445901295-ZIP-9745 Compressed data (ZIP) was found at disk offset
445901295. The feature (Uranium-235) was found at off-
set 9745 in that compressed data.

Uranium-235 The feature that was found (our search term)

ference between Uranium

↪→ -235 and Uranium-238

The context the feature was found in.

Using what we’ve learned previously about physical searching, let’s have a quick look at
the data found at that offset. Remember our formula for finding the offset in a file system
when given a disk offset? We’ve seen this NTFS image set before, so we already know the
file system starts at sector offset 2048, so we’ll calculate the file system offset and then run
the ifind command we’ve used several times already to find out what MFT entry points to
the data block. Finally we’ll use the icat command and pipe the output to file so we can
identify the type:

barry@forensicbox:bulk_out$ echo "((445901295-(2048*512))/4096)" | bc

108606

barry@forensicbox:bulk_out$ ifind -d 108606 -o 2048
../NTFS_Pract_2017/NTFS_Pract_2017.E01

236-128-2

barry@forensicbox:bulk_out$ icat -o 2048 ../NTFS_Pract_2017/NTFS_Pract_2017.E01
236 | file -

/dev/stdin: Microsoft Word 2007+

So we see that the feature was found in a Microsoft Word document in .docx format, which
is compressed XML. This file can be viewed with antiword (remember antiword? docx2txt

is similar, but for the XML compressed .docx format). We will do this at the end of the
exercise.

285

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

After the feature files, we move on to the histogram file. A histogram is simply a file
that will list the features along with the number of times that feature was found. This
frequency reporting is one of the more useful aspects of bulk_extractor. It is the histograms
that provide a great deal of context to the contents of a disk image. Particularly where
investigations involving fraud or PII are concerned, the frequency of a credit card number
or email address can tell an investigator, at a glance, what accounts were used and the
most frequently used accounts, or who the closest associates might be, etc. In our case the
histogram shows only one instance (n=1) of our search term.

barry@forensicbox:bulk_out$ cat find_histogram.txt

BANNER FILE NOT PROVIDED (-b option)

BULK_EXTRACTOR-Version: 2.0.0

Feature-Recorder: find

Filename: NTFS_Pract_2017/NTFS_Pract_2017.E01

Histogram-File-Version: 1.1

n=1 uranium-235

Let’s run bulk_extractor again, but this time we’ll leave all the default scanners running
and use a list of search terms instead (just two). Change back to your home directory, and
using a text editor (vi!), create a file with just these two terms:

[Uu]ranium-235

262698143

...we’ve turned our first term into regular expression that looks for either an upper or low-
ercase letter to start the word. The second is a "known victim" social security number31.
Save the file as myterms.txt.

Now we’ll re-run bulk_extractor, without disabling or enabling scanners, and a file of terms
to search for (-F myterms.txt). The output directory will be blk_out_full (-o blk_out_full

↪→). With all the scanners running, you will see quite a few more files in the output directory.

barry@forensicbox~$ bulk_extractor -F myterms.txt -o blk_out_full
NTFS_Pract_2017/NTFS_Pract_2017.E01

This command results in a great deal more output (but keep in mind that files of zero length
are empty – nothing found). Look at the contents of the find.txt file now:

barry@forensicbox:~$ ls blk_out_full

aes_keys.txt email_histogram.txt httplogs.txt

alerts.txt ether.txt ip.txt

ccn.txt ether_histogram.txt ip_histogram.txt

31The second term is a social security number. Numbers for this exercise were generated with http:
//www.theonegenerator.com/ssngenerator

286

http://www.theonegenerator.com/ssngenerator
http://www.theonegenerator.com/ssngenerator

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

ccn_histogram.txt ether_histogram_1.txt jpeg_carved.txt

ccn_track2.txt evtx_carved/ json.txt

ccn_track2_histogram.txt evtx_carved.txt kml_carved/

...

...

barry@forensicbox:~$ cat blk_out_full/find.txt

BANNER FILE NOT PROVIDED (-b option)

BULK_EXTRACTOR-Version: 2.0.0

Feature-Recorder: find

Filename: NTFS_Pract_2017/NTFS_Pract_2017.E01

Feature-File-Version: 1.1

1193351-PDF-92 262698143 629369510 SSN: 262698143

445901295-ZIP-9745 Uranium-235 ference between Uranium-235 and Uranium-238

445901295-ZIP-0-MSXML-857 Uranium-235 ference between Uranium-235 and Uranium-238

This time we see that our find.txt contains both the Uranium-235 hit we saw previously but
also the "victim" social security number we added to our terms list. We now have features
that were found in a zip archive (.docx file we identified earlier) and a PDF file (using the pdf

scanner). The Microsoft Word file we identified earlier is now showing two features instead
of one. This is because it was found by two scanners, the zip scanner and the msxml scanner.

You can browse around the rest of the feature files and histograms to see what else we may
have uncovered. There’s quite a bit of information there and you can get a general idea
of things like the user’s browsing activity by looking at url_histogram.txt. You certainly
can’t draw conclusions, but higher frequency domains can provide some context to you
investigation.

One thing you may notice is that a large number of the features found by the email and url

scanners (and others) come from known sources. Every operating system and the external
software we use has help files, manuals, and other documentation that contain email ad-
dresses, telephone numbers, and web addresses that are uninteresting, but will still end up
in your bulk_extractor feature files and histograms. These false positives can be limited by
using stop lists. Much like our myterms.txt file, a stop list can be a simple list of terms (or
terms with context) that are blocked from the regular scanner feature files (but still reported
in special stopped.txt files for each scanner).

A final bulk_extractor capability that we’ll mention briefly here is the wordlist scanner.
Disabled by default, the wordlist scanner creates lists of words that can be used to attempt
password cracking. In a normal bulk_extractor run, just use -e wordlist to enable the
scanner, or use -E wordlist to run it on its own.

Very quickly lets go back and use our keyword hit on Uranium-235 to learn about a quick
command line .docx format file

barry@forensicbox:bulk_out$ su -

287

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

Password:

root@forensicbox:~# sboinstall docx2txt

docx2txt - docx to text converter

docx2txt is a perl based command line utility to convert Microsoft

Office OOXML (docx) documents to equivalent ASCII text documents.

Proceed with docx2txt? [y] y

...

Package docx2txt-1.4-noarch-1_SBo.tgz installed.

Cleaning for docx2txt-1.4...

root@forensicbox:~# exit

Now we can re-run the icat command we used earlier on the MFT entry pointing to the
Uranium-235 keyword. This time we’ll re-direct the output of icat to a file called NTFS.236

↪→ . Then we use docx2txt piped through less to display the file. Note that we must use
redirection to feed the contents of our extracted file to docx2txt. We do this with < [infile]:

barry@forensicbox:~$ icat -o 2048 NTFS_Pract_2017/NTFS_Pract_2017.E01 236 >
NTFS.236

barry@forensicbox:~$ docx2txt < NTFS.236 | less

Watch modern marvels the Manhattan project. You can find it in 5 parts on youtube

https://www.youtube.com/watch?v=SwHds1any9Y

https://www.youtube.com/watch?v=VGGAIuc5dWI

https://www.youtube.com/watch?v=eHvUgtVOP64

https://www.youtube.com/watch?v=aAXy5V-zRyc

https://www.youtube.com/watch?v=aJuBHzgLUAw

Name_______________________________

Modern Marvels: Manhattan Project

...

What is the difference between Uranium-235 and Uranium-238?

...

...And we see the keyword hit in our output along with the expected context from the feature
file.

288

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

11.5 Physical Carving

We’ve seen a number of cases in previous exercises where we needed to locate file headers to
recover data. We saw a specific need for this with our ext4 exercise where we found out that
direct block pointers were no longer available for deleted files, making recovery very difficult.
We also did manual recovery in our "Data Carving With dd" exercise, locating the header
of a JPEG file in hex and using dd to physically "carve" out the file. A useful skill, but a bit
tedious on a large disk image with potentially dozens, hundreds or even thousands of files
that might require recovery. If you are unfamiliar with file carving, or need a refresher, you
can start reading here: http://forensicswiki.org/wiki/File_Carving

Since we gained a cursory understanding of the mechanics of carving through our dd problem,
we can move on to more automated tools that do the work for us. There are a number of
tools available to accomplish this. We are going to concentrate on just two. scalpel, and
photorec. The latter is from the testdisk package.

11.5.1 scalpel

We’ll start by installing scalpel. Use sboinstall to install it, being sure to read the README

file. If you are not using Slackware, go ahead and use your distribution’s package management
tool. You will see that for Slackware, scalpel has a single dependency that must be installed
first TRE, which is handled automatically by sboinstall:

root@forensicbox:~# sboinstall scalpel

TRE is a lightweight, robust, and efficient POSIX compliant regexp

matching library with some exciting features such as approximate

(fuzzy) matching.

Proceed with tre? [y]

tre added to install queue.

Scalpel is a fast file carver that reads a database of header and footer

definitions and extracts matching files or data fragments from a set of

image files or raw device files. Scalpel is filesystem-independent and will

carve files from FATx, NTFS, ext2/3, HFS+, or raw partitions. It is useful

for both digital forensics investigation and file recovery.

To use it, you MUST have a conf file that defines the file types you want

to recover. Use the example scalpel.conf file from /usr/doc/scalpel

See the man page for details.

Proceed with scalpel? [y]

...

289

http://forensicswiki.org/wiki/File_Carving

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

Cleaning for scalpel-2.0...

If you read the README file (which you did, RIGHT?), you will see that we need to copy and
edit the scalpel.conf file before we can run the program. We can either edit and use it in
place, or copy it to our working directory which scalpel uses by default.

For now, we’ll copy the scalpel.conf file that was installed with our package to a new carve

sub directory in our /home directory, which we’ll create now, and edit the config file there.

barry@forensicbox:~$ mkdir ~/carve

barry@forensicbox:~$ cd ~/carve

barry@forensicbox:~$ cp /usr/share/doc/scalpel-2.0/scalpel.conf .

The final ’.’ in the command above signifies the destination, our current directory.
scalpel.conf starts out completely commented out. We will need to uncomment some file
definitions in order to have scalpel work. Open scalpel.conf with vi (or your editor of
choice. You should take time to read the file as it explains the structure of the file definitions
in useful detail.

barry@forensicbox:~$ vi scalpel.conf

Scalpel configuration file

This configuration file controls the types and sizes of files that

are carved by Scalpel. NOTE THAT THE FORMAT OF THIS FILE WAS

EXTENDED in Scalpel 1.90-->!

For each file type, the configuration file describes the file’s

extension, whether the header and footer are case sensitive, the

min/maximum file size, and the header and footer for the file. The

footer field is optional, but extension, case sensitivity, size, and

footer are required. Any line that begins with a ’#’ is considered

a comment and ignored. Thus, to skip a file type just put a ’#’ at

the beginning of the line containing the rule for the file type.

...

Scroll down to where the # GRAPHICS FILES section starts (for the purpose of our exercise) and
just uncomment every line that describes a file in that section. Be careful not to uncomment
lines that should remain comments. To uncomment a line, simply remove the hash (#)
symbol at the start of the line. The # GRAPHICS FILES section should look like this when you
are done (extra hash symbols don’t matter, as long as the correct lines are uncommented,
and the section lines are still commented):

290

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

#---

GRAPHICS FILES

#---

#

#

AOL ART files

art y 150000 \x4a\x47\x04\x0e \xcf\xc7\xcb

art y 150000 \x4a\x47\x03\x0e \xd0\xcb\x00\x00

#

GIF and JPG files (very common)

gif y 5000000 \x47\x49\x46\x38\x37\x61 \x00\x3b

gif y 5000000 \x47\x49\x46\x38\x39\x61 \x00\x00\x3b

jpg y 200000000 \xff\xd8\xff\xe0\x00\x10 \xff\xd9

jpg y 200000000 \xff\xd8\xff\xe1 \xff\xd9

PNG

png y 20000000 \x50\x4e\x47? \xff\xfc\xfd\xfe

BMP (used by MSWindows, use only if you have reason to think there are

BMP files worth digging for. This often kicks back a lot of false

positives

bmp y 100000 BM??\x00\x00\x00

#

TIFF

tif y 200000000 \x49\x49\x2a\x00

TIFF

tif y 200000000 \x4D\x4D\x00\x2A

#

If you look at the lines for the jpg images, you will see the familiar pattern that we searched
for during our dd carving exercise. \xff\xd8 for the header and \xff\xd9 for the footer.
When we run scalpel these uncommented lines will be used to search for patterns. When
you are finished editing the file (double check!), save and quit with :wq

For this exercise, we will use the able_3 split image as our exercise target. In our Sleuth Kit
exercise #1B (deleted file identification and recovery – ext4), we ran across a number of files
(lolitaz*) in the /home directory that could not be recovered. This is an obvious use case
for file carving.

Since we are able to get the allocated files from the /home partition on able_3, we might want
to limit our carving to unallocated blocks only. This is a common way to carve file systems –
separate the allocated and the unallocated and carve those blocks only. We already learned
how to extract all unallocated blocks from a file system using the TSK tool blkls. So we’ll
start by extracting the unallocated first.

291

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

Remember that the TSK tools can work directly on split images, so there is no need for us to
fuse mount the image or loop mount any file systems. Running mmls gives us the file system
offsets (if you remember, the /home directory was mounted on the second Linux file system
at offset 104448). We use that with our blkls command. You can run a quick recursive fls

command using the -r option to refresh your memory on the files we are looking for. The
files with the asterisk (*) next to the inode number are deleted:

barry@forensicbox:carve$ mmls ../able_3/able_3.000

GUID Partition Table (EFI)

Offset Sector: 0

Units are in 512-byte sectors

Slot Start End Length Description

000: Meta 0000000000 0000000000 0000000001 Safety Table

001: ------- 0000000000 0000002047 0000002048 Unallocated

002: Meta 0000000001 0000000001 0000000001 GPT Header

003: Meta 0000000002 0000000033 0000000032 Partition Table

004: 000 0000002048 0000104447 0000102400 Linux filesystem

005: 001 0000104448 0000309247 0000204800 Linux filesystem

006: ------- 0000309248 0000571391 0000262144 Unallocated

007: 002 0000571392 0008388574 0007817183 Linux filesystem

008: ------- 0008388575 0008388607 0000000033 Unallocated

barry@forensicbox:carve$ fls -o 104448 -r ../able_3/able_3.000

d/d 11: lost+found

d/d 12: ftp

d/d 13: albert

+ d/d 14: .h

++ r/d * 15(realloc): lolit_pics.tar.gz

++ r/r * 16(realloc): lolitaz1

++ r/r * 17: lolitaz10

++ r/r * 18: lolitaz11

++ r/r * 19: lolitaz12

++ r/r 20: lolitaz13

++ r/r * 21: lolitaz2

++ r/r * 22: lolitaz3

++ r/r * 23: lolitaz4

++ r/r * 24: lolitaz5

++ r/r * 25: lolitaz6

++ r/r * 26: lolitaz7

++ r/r * 27: lolitaz8

++ r/r * 28: lolitaz9

+ d/d 15: Download

++ r/r 16: index.html

++ r/r * 17: lrkn.tar.gz

V/V 25689: $OrphanFiles

292

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

To obtain the unallocated blocks using blkls:

barry@forensicbox:carve$ blkls -o 104448 ../able_3/able_3.000 > able3.home.blkls

barry@forensicbox:carve$ ls -lh

total 92M

-rw-r--r-- 1 barry users 92M Aug 2 08:35 able3.home.blkls

-rwxr-xr-x 1 barry users 13K Aug 2 08:28 scalpel.conf*

The blkls command is run with the offset (-o) pointing to the second Linux file system that
starts at sector 104448. The output is redirected to able3.home.blkls. The name home is
used to signify that this is the partition mounted as /home in the original able_3 disk. Now
we can see (with the ls command above) that we have two files in the ~/carve directory.

scalpel has a number of options available to adjust the carving. There is an option to have
scalpel carve the files on block (or cluster) aligned boundaries. This means that you would
be searching for files that start at the beginning of a data block. Be careful doing that. The
trade off here is that while you get fewer false positives, it also means that you miss files
that may be embedded or "nested" in other files. Block aligned searching is done with the
-q <blocksize> option. Try this option later, and compare the output. To get the block size
for the target file system, you can use the fsstat command as we did in previous exercises.

You can carve multiple images at once with the -i <listfile> option, and there are other
options to test data (write an audit file without carving).

In this case, we’ll use an option that allows us to properly parse embedded files (-e). This
option allows the proper pairing of headers and footers. Without the -e option, a header
followed by another header (as with an embedded file), would result in both files sharing the
same footer.

Finally, we’ll use the -o option to redirect our carved files to a directory we are going to call
scalp_out and the -O option so the output remains in a single output directory instead of
categorized sub directories. Having the files in a single folder makes for easier viewing.

barry@forensicbox:carve$ scalpel -o scalp_out -O -e able3.home.blkls

Scalpel version 2.0

Written by Golden G. Richard III and Lodovico Marziale.

Multi-core CPU threading model enabled.

Initializing thread group data structures.

Creating threads...

Thread creation completed.

Opening target "/home/barry/carve/able3.home.blkls"

Image file pass 1/2.

293

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

able3.home.blkls: 100.0% |**********************************| 91.3 MB 00:00

↪→ ETAAllocating work queues...

Work queues allocation complete. Building work queues...

Work queues built. Workload:

art with header "\x4a\x47\x04\x0e" and footer "\xcf\xc7\xcb" --> 0 files

art with header "\x4a\x47\x03\x0e" and footer "\xd0\xcb\x00\x00" --> 0 files

gif with header "\x47\x49\x46\x38\x37\x61" and footer "\x00\x3b" --> 0 files

gif with header "\x47\x49\x46\x38\x39\x61" and footer "\x00\x00\x3b" --> 1 files

jpg with header "\xff\xd8\xff\xe0\x00\x10" and footer "\xff\xd9" --> 6 files

jpg with header "\xff\xd8\xff\xe1" and footer "\xff\xd9" --> 0 files

png with header "\x50\x4e\x47?" and footer "\xff\xfc\xfd\xfe" --> 0 files

bmp with header "BM??\x00\x00\x00" and footer "" --> 0 files

tif with header "\x49\x49\x2a\x00" and footer "" --> 0 files

tif with header "\x4D\x4D\x00\x2A" and footer "" --> 0 files

Carving files from image.

Image file pass 2/2.

able3.home.blkls: 100.0% |**********************************| 91.3 MB 00:00

↪→ ETAProcessing of image file complete. Cleaning up...

Done.

Scalpel is done, files carved = 7, elapsed = 1 secs.

barry@forensicbox:carve$ ls scalp_out/

00000000.gif 00000002.jpg 00000004.jpg 00000006.jpg

00000001.jpg 00000003.jpg 00000005.jpg audit.txt

The output above shows scalpel carving those file types in which the definitions were un-
commented. Once the command completes, a directory listing shows the files (with the
extension for the carved file type added) and an audit.txt file. The audit.txt file provides
a log with the contents of scalpel.conf and the program output:

barry@forensicbox:carve$ less scalp_out/audit.txt

Scalpel version 2.0 audit file

Started at Fri Aug 2 08:44:13 2019

Command line:

scalpel -o scalp_out -O -e able3.home.blkls

Output directory: scalp_out

Configuration file: /home/barry/carve/scalpel.conf

------ BEGIN COPY OF CONFIG FILE USED ------

Scalpel configuration file

This configuration file controls the types and sizes of files that

are carved by Scalpel. NOTE THAT THE FORMAT OF THIS FILE WAS

EXTENDED in Scalpel 1.90-->!

...

------ END COPY OF CONFIG FILE USED ------

294

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

Opening target "/home/barry/carve/able3.home.blkls"

The following files were carved:

File Start Chop Length Extracted From

00000006.jpg 6586930 NO 6513 able3.home.blkls

00000005.jpg 6586368 NO 64601 able3.home.blkls

00000004.jpg 6278144 NO 15373 able3.home.blkls

00000003.jpg 6249472 NO 27990 able3.home.blkls

00000002.jpg 6129070 NO 5145 able3.home.blkls

00000001.jpg 6128640 NO 94426 able3.home.blkls

00000000.gif 6223872 NO 25279 able3.home.blkls

Completed at Fri Aug 2 08:44:14 2019

The entire scalpel.conf file is included in audit.txt. At the bottom of the output is our
list of carved files with the offset the header was found at, the length of the file, and the
source (what was carved). The column labeled Chop would refer to files that had a maximum
number of bytes carved before the footer was found. You can read the scalpel.conf file for
a more detailed description.

The files can be viewed with display at the command line or with a GUI viewer that can
provide a thumbnail and windowed view (sxiv is a great CLI image viewer with thumbnail
capabilities). The program geeqie is a simple example of a GUI viewer.

barry@forensicbox:carve$ cd scalp_out/

barry@forensicbox:carve$ geeqie

There are other files to be found in this unallocated data. To illustrate this, let’s look at the
scalpel.conf file again and add a different header definition for a bitmap file. Open
scalpel.conf with your text editor (vi)32 and add the following line (shown in red) under
the current bmp line in the # GRAPHICS FILES section:

32If you are using vi to edit the file, you should copy and paste the line. With the cursor on the existing
line, use yy to copy the text (current line) and then p to paste on the line below. Then edit that line.

295

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

Figure 22: Viewing carved files with geeqie

barry@forensicbox:carve$ vi scalpel.conf

...

BMP (used by MSWindows, use only if you have reason to think there are

BMP files worth digging for. This often kicks back a lot of false

positives

bmp y 100000 BM??\x00\x00\x00

bmp y 300000 BM??\x04\x00\x00
...

Here we’ve changed the max size to 300000 bytes, and replaced the first x00 string with x04.
Save the file. Re-run scalpel again (write to a different output directory - scalp_out2), and
check the output:

barry@forensicbox:carve$ scalpel -o scalp_out2 -O -e able3.home.blkl

Scalpel version 2.0

Written by Golden G. Richard III and Lodovico Marziale.

Multi-core CPU threading model enabled.

Initializing thread group data structures.

Creating threads...

Thread creation completed.

Opening target "/home/barry/carve/able3.home.blkls"

296

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

Image file pass 1/2.

able3.home.blkls: 100.0% |**********************************| 91.3 MB 00:00

↪→ ETAAllocating work queues...

Work queues allocation complete. Building work queues...

Work queues built. Workload:

art with header "\x4a\x47\x04\x0e" and footer "\xcf\xc7\xcb" --> 0 files

art with header "\x4a\x47\x03\x0e" and footer "\xd0\xcb\x00\x00" --> 0 files

gif with header "\x47\x49\x46\x38\x37\x61" and footer "\x00\x3b" --> 0 files

gif with header "\x47\x49\x46\x38\x39\x61" and footer "\x00\x00\x3b" --> 1 files

jpg with header "\xff\xd8\xff\xe0\x00\x10" and footer "\xff\xd9" --> 6 files

jpg with header "\xff\xd8\xff\xe1" and footer "\xff\xd9" --> 0 files

png with header "\x50\x4e\x47?" and footer "\xff\xfc\xfd\xfe" --> 0 files

bmp with header "BM??\x00\x00\x00" and footer "" --> 0 files

bmp with header "BM??\x04\x00\x00" and footer "" -> 1 files

tif with header "\x49\x49\x2a\x00" and footer "" --> 0 files

tif with header "\x4D\x4D\x00\x2A" and footer "" --> 0 files

Carving files from image.

Image file pass 2/2.

able3.home.blkls: 100.0% |**********************************| 91.3 MB 00:00

↪→ ETAProcessing of image file complete. Cleaning up...

Done.

Scalpel is done, files carved = 8, elapsed = 1 secs.

Looking at the highlighted output above, we can see that a total of eight files were carved this
time. The bitmap definition we added clearly shows the scalpel.conf file can be improved
on. It’s also not difficult to do. Simply using xxd to find matching patterns in groups of files
can be enough for you to build a decent library of headers. This is particularly useful if you
come across many proprietary formats.

Given that carving can be approached with a variety of algorithms, it might be a good idea
to run your data through more than one tool. For this, we’ll now look at photorec.

11.5.2 photorec

Part of the testdisk package, photorec is another carving program. It does, however, take a
very different approach. photorec was not originally designed as a forensic utility, but rather
as a data recovery tool for people who lose files from SD cards and other media. It has
evolved into a very useful tool for extracting many different files from media. As part of the
testdisk package, it is installed alongside the testdisk tool itself (for recovering partitions),
fidentify (same basic idea as the file command, but less verbose), and qphotorec.
qphotorec is a GUI front end to photorec.

We will, of course, be sticking to the command line version here (which is actually menu
driven). We can compare the output received from scalpel with the output from photorec

297

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

Figure 23: qphotorec - GUI front end for photorec

by running the carve on the same home.blkls unallocated data from our able_3 disk image.
First, log in as root (su -) and install the testdisk package with sboinstall:

barry@forensicbox:carve$

su -

Password:

root@forensicbox:~# sboinstall testdisk

TestDisk is a powerful free data recovery software. It was primarily

designed to help recover lost partitions and/or make non-booting

disks bootable again when these symptoms are caused by faulty

software, certain types of viruses or human error (such as

accidentally deleting a Partition Table). Partition table recovery

using TestDisk is really easy.

PhotoRec is file data recovery software designed to recover lost files

including video, documents and archives from Hard Disks and CDRom and

lost pictures from digital camera memory.

If you want to enable the use of sudo run the script with SUDO=true

298

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

libewf is an optional dependency.

...

Proceed with testdisk? [y]

...

Package testdisk-7.0-x86_64-1_SBo.tgz installed.

Cleaning for testdisk-7.0...

The SlackBuild specifies that libewf is an optional dependency, and since we already have
libewf installed, it will be detected and compiled in for EWF support.

Running photorec from the command line is simple. We’ll use an option for creating a log
file using /log (created in the current directory) and providing an output directory
/d <dirname> (we’ll use photorec_out). We will also point the program directly at the
able3.home.blkls unallocated data from able_3. This will drop us into the photorec menu.

Figure 24: photorec main menu

barry@forensicbox:~$ photorec /log /d photorec_out able3.home.blkls*)

The main menu appears with the able3.home.blkls file already selected and loaded (See
Figure 24). We’ll go through the menu options quickly. It’s all fairly self explanatory, and
additional details can be found at http://www.cgsecurity.org/wiki/PhotoRec_Step_By_
Step.

Normally, the main menu would include disk partitions from internal disks and removable
media, but since we specifically called the able3.home.blkls file, it is loaded by default (See
Figure 25). Select [Proceed] with the arrow keys and hit <enter>.

299

http://www.cgsecurity.org/wiki/PhotoRec_Step_By_Step
http://www.cgsecurity.org/wiki/PhotoRec_Step_By_Step

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

Figure 25: photorec running on the able3.home.blkls file

If this were a full disk image, photorec would display the file systems and partitions contained
in the image. In this case, it is simply unallocated data and there is no partition to display.
Select [Options] and hit <enter>.

Figure 26: Viewing photorec options in the running program

The options provided are (See Figure 26):

• Paranoid: Used to validate files that are carved. We’ll leave it as Yes for now.

300

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

• Keep corrupted files: In normal use you might want to enable this just to be safe
(collect as much data as possible). I’ve never found it particularly useful.

• Expert mode: Provides additional options for setting specific disk geometry. Unless you
are working with a corrupt disk image with a mangled partition table, you can leave
this at No.

• Low memory: For really large disk images where memory becomes an issue.

Obviously feel free to play with the options and explore the different menus. For this simple
exercise, leaving the defaults as is will work just fine.

Return to the main menu by selecting >Quit and from the main menu choose [File Opt]

and hit <enter>.

This will bring you to the file selection menu (See Figure 27). photorec will recover almost
five hundred different file signatures. You can select or deselect from this menu. For now
we’ll leave the default file selections in place (there are a few deselected by default). Select
[Quit] again to return to the main menu. At the main menu, select [Search] and hit <enter>.

Figure 27: photorec file options menu

This is where we select the file system type (See Figure 28). We’ll choose [ext2/ext3] and
hit <enter>, starting the search.

Once the search is complete, you will see the number of files recovered, and the output direc-
tory (photorec_out, which we specified on our command line). The carve is now complete.
Select [Quit] in the subsequent menus and exit the program You’ll be dropped back at the
command prompt (See Figure 29)

301

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

Figure 28: photorec file system selection

Figure 29: photorec file system selection

Looking at a directory listing, you can see we now have a new output directory,
photorec_out.1/ along with a log file that was created with the /log option. Have a look at
the log file, photorec.log with the less command.

barry@forensicbox:carve$ ls -l

total 93516

-rw-r--r-- 1 barry users 95726592 Aug 4 12:35 able3.home.blkls

-rw-r--r-- 1 barry users 2825 Aug 4 15:07 photorec.log

302

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

drwxr-xr-x 2 barry users 4096 Aug 4 15:07 photorec_out.1/

drwxr-xr-- 2 barry users 4096 Aug 4 12:38 scalp_out/

drwxr-xr-- 2 barry users 4096 Aug 4 12:41 scalp_out2/

-rwxr-xr-x 1 barry users 12967 Aug 4 12:41 scalpel.conf*

barry@forensicbox:carve$ less photorec.log

...

Sun Aug 4 12:56:02 2019

Command line: PhotoRec /log /d photorec_out able3.home.blkls

PhotoRec 7.0, Data Recovery Utility, April 2015

Christophe GRENIER <grenier@cgsecurity.org>

http://www.cgsecurity.org

Disk able3.home.blkls - 95 MB / 91 MiB - CHS 12 255 63 (RO), sector size=512

...

blocksize=1024, offset=0

Elapsed time 0h00m00s

Pass 1 (blocksize=1024) STATUS_EXT2_ON

photorec_out.1/f0012156.gif 12156-12205

photorec_out.1/f0012206.jpg 12206-12261

photorec_out.1/f0012262.jpg 12262-12293

photorec_out.1/f0012294.bmp 12294-12863

photorec_out.1/f0012904.gz 12904-186965

Elapsed time 0h00m01s

Pass 1 +5 files

jpg: 2/4 recovered

bmp: 1/1 recovered

gif: 1/1 recovered

gz: 1/1 recovered

Total: 5 files found

12196 sectors contains unknown data, 2 invalid files found and rejected.

Like scalpel, the log output provides suitable information for inclusion in a report if needed,
note that the offset locations for each carved file are given in sector offset rather than byte
offset (multiply each offset given above by 512 to compare the offsets with the scalpel

audit.txt file).

Have a look at the output of photorec:

barry@forensicbox:carve$ ls photorec_out.1/

f0012156.gif

f0012206.jpg

f0012262.jpg

f0012294.bmp

f0012904_lrkn.tar.gz

report.xml

303

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

The contents of the output directory show photorec recovered not only a few image files, but
also a file called f0012904_lrkn.tar.gz. If you recall our able_3 exercise, you’ll remember
that this was a file of some interest. photorec is useful for far more than just a few images.
If you try and untar/extract the file, you’ll find it’s corrupted. Some of it, however, is still
recoverable.

barry@forensicbox:carve$ tar tzvf photorec_out.1/f0012904_lrkn.tar.gz

drwxr-xr-x lp/lp 0 1998-10-01 18:48 lrk3/

-rwxr-xr-x lp/lp 742 1998-06-27 11:30 lrk3/1

-rw-r--r-- lp/lp 716 1996-11-02 16:38 lrk3/MCONFIG

-rw-r--r-- lp/lp 6833 1998-10-03 05:02 lrk3/Makefile

-rw-r--r-- lp/lp 6364 1996-12-27 22:01 lrk3/README

...

gzip: stdin: decompression OK, trailing garbage ignored

-rw-r--r-- lp/lp 1996 1996-11-02 16:39 lrk3/z2.c

tar: Child returned status 2

tar: Error is not recoverable: exiting now

There is still much information that can be gleaned from the recovery of this file. You can
see the README is one of those files recovered. We can use this to define strings for us to
search and perhaps discover where the archive was decompressed and extracted (which we
did earlier in our physical search exercise). This is one of the reasons we elect to use more
than one carving utility. Differences in output can strengthen our analysis.

One question you might find yourself asking is "How do I efficiently compare carve output
from two different tools to get an accurate count of files recovered?". In our very small sample
produced by the exercises here, it’s a fairly simple job. We just compare the image files in
a graphical viewer. There are a little over a dozen total images to review. If, however, we
were to carve a disk image with hundreds of unallocated image files, the comparison would
be far more difficult. To address this, let’s have a look at a simple program that will do the
work for us.

11.5.3 Comparing and De-duplicating Carve Output

Obviously this is not a simple matter of comparing file names. The files are carved from
the data blocks without any regard to directory entries or other file system information. So
the tools use their own naming scheme. Interestingly photorec included the name of the
original lrkn.tar.gz name of the tar archive in its output. This is because the name of the
file is part of the file metadata (run file f0012904_lrkn.tar.gz and you’ll see the gzip header
contains the name).

304

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

One thing we can do is compare hashes. If hashes match, regardless of file name, then we
know we have two of the same files. One simple way to do this would be to hash all the files
in each directory (photorec_out and scalp_out2) and write them to a file. We could then
sort this file by the hash and look for duplicates. This can be done in one command. Note
that we use f0* and 0* for the md5sum command in each directory so that we get just the
carve output files and not the log/audit files from each tool.

barry@forensicbox:carve$ md5sum photorec_out.1/f0*scalp_out2/0*| sort

110983800a177c1746c54b15edec989a photorec_out.1/f0012156.gif

110983800a177c1746c54b15edec989a scalp_out2/00000000.gif

2d7d4def42fcbcc0c813a27505f0508b photorec_out.1/f0012904_lrkn.tar.gz

357ca99e654ca2b179e1c5a0290b1f94 photorec_out.1/f0012262.jpg

357ca99e654ca2b179e1c5a0290b1f94 scalp_out2/00000004.jpg

437a614c352b03a6a4575e9bbc2070ae photorec_out.1/f0012206.jpg

437a614c352b03a6a4575e9bbc2070ae scalp_out2/00000003.jpg

6742ca9862a16d82fdc4f6d54f808f41 scalp_out2/00000007.bmp

a0794399a278ce48bfbd3bd77cd3394d scalp_out2/00000002.jpg

aa607253fc9b0a70564228ac27ad0b13 scalp_out2/00000006.jpg

b5ca633bea09599c3fb223b4187bb544 photorec_out.1/f0012294.bmp

b6703670db3f13f23f7a3ed496a2b95c scalp_out2/00000001.jpg

f979cd849ccdd5c00fd396b600a9a283 scalp_out2/00000005.jpg

By sorting the output, the duplicate hashes are listed together. From the output above we
can see that these two files are identical:

110983800a177c1746c54b15edec989a photorec_out.1/f0012156.gif

110983800a177c1746c54b15edec989a scalp_out2/00000000.gif

This can be re-directed to a file for later processing.

barry@forensicbox:carve$ md5sum photorec_out.1/f0*scalp_out2/0*| sort >
carvehash.txt

Well, this is fine. But it might also be nice to actually de-duplicate the files by removing one
of the duplicates. Again, easy enough in our small sample here, but far more challenging
and time consuming if you are dealing with hundreds or thousands of contraband images
you need to sort and accurately count.

For this we can use a program called fdupes. fdupes works using both filenames and hashes
to find, report, and if requested – remove duplicate files from user specified directories. It is
easy to use and very effective.

barry@forensicbox:carve$ su -

Password:

root@forensicbox:~# sboinstall fdupes

305

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

FDUPES is a program for identifying or deleting duplicate files residing

within specified directories.

Proceed with fdupes? [y]

...

Package fdupes-1.6.1-x86_64-1_SBo.tgz installed.

Cleaning for fdupes-1.6.1...

We will run fdupes twice (always good practice). The first run will show all the duplicated
files, each pair on a single line. Review the output to ensure there are no unexpected files,
and then re-run the command with the --delete option.

barry@forensicbox:carve$ fdupes -R -1 photorec_out.1/ scalp_out2/

scalp_out2/00000004.jpg photorec_out.1/f0012262.jpg

scalp_out2/00000000.gif photorec_out.1/f0012156.gif

scalp_out2/00000003.jpg photorec_out.1/f0012206.jpg

The options we pass are -R for recursion. There are no sub folders in this example, but it never
hurts to allow recursion. Particularly on large scale examinations where carve output can
be quite massive and you might have specified categorized output for scalpel in particular
(different file types in different directories). We also use the -1 option to put matches on the
same line. This is personal preference. Run without this option and see what you prefer.

Once the output has been previewed, re-run the command with the --delete option to keep
only the first file in each pair (or set). If you’ve reviewed the output prior to deleting, then
you might want to add the -N option for "no prompt". Use at your own discretion. Without
-N, if you have hundreds of pairs of matching files, you’ll need to confirm each deletion.

barry@forensicbox:~$ fdupes -R -N -delete photorec_out.1/ scalp_out2/

[+] scalp_out2/00000004.jpg

[-] photorec_out.1/f0012262.jpg

[+] scalp_out2/00000000.gif

[-] photorec_out.1/f0012156.gif

[+] scalp_out2/00000003.jpg

[-] photorec_out.1/f0012206.jpg

The output above indicates that the first file has been kept [+] and the second file deleted
[-]. If there were more than one matching file in each set, then only the first would remain.
To better control this behavior, remove the -N option and you can select which files to keep.

306

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

This concludes our physical carving section. We’ve learned how to carve files from unallo-
cated space, view the files, sort them, and remove duplicates in an efficient manner.

11.6 Application Analysis

We’ve now covered several of the layers we discussed previously, including the physical and
media management layers for disk information and partition layout; file system tools for
gathering information on the file system statistics; and tools to work on individual files to
search content and identify file types of interest. We’ve even done some data recovery at the
physical block layer – regardless of volume and file system through carving and extensive
searches. So now that we’ve recovered files, what do we do with them?

This is where the application layer of our analysis model comes in. For our purposes here,
the term "application" can be thought of as operating system or user interactive files - that
is: files that are created by applications accessed by the operating system or through user
interaction (either with the operating system or external software).

In simplest terms, application analysis can be as simple as viewing the file directly for content
– we’ve used antiword and docx2txt for MS Office files, various image viewers like geeqie,
and display for pictures, and simple text viewers like less for ASCII files. But forensic
analysis is much more than simply recovering files and displaying the content. That sort
of activity is really just data recovery. Digital forensics, however, needs to include other
techniques:

• temporal analysis (when did it happen?)

• attribution (who made it happen?)

• activity mapping (how did it happen?)

Obviously we can glean some of this information through the analysis we’ve done already,
using file times we see in the istat output or the location of files in a particular user’s home
directory or Users folder.

In order to dig a little deeper, we are going to have a look at some simple applications that
will allow us to peer into the Windows Registry, Windows Event logs, and other artifacts to
obtain additional forensically useful information. We’ll do this using some utilities from the
libyal project.

You can read more about libyal at https://github.com/libyal/libyal/wiki. There are
a couple of important notes on these libraries we need to cover before we begin. First and
foremost, make sure you understand that many of these libraries are in alpha or experimental
status, meaning they are not fully matured and, as the above site very clearly states, are
subject to break and/or change. The projects we will look at here are in alpha status. They
have been tested on some simple sample files, but make sure that you test them in your own

307

https://github.com/libyal/libyal/wiki

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

environment prior to use. These are excellent projects, and well worth keeping up with, but
make sure you know what you are doing (and seeing) before using them in production. Using
software that is clearly marked alpha or experimental is not recommended for production
case work unless you understand and test the output for yourself. For the time being, these
make for excellent tertiary cross-verification tools and vehicles for learning specific artifacts
and structure.

11.6.1 Registry Parsing Exercise 1: UserAssist

Let’s start our exploration of libyal and application analysis by looking at specific Windows
registry files.

As usual, we start with the disclaimer that this section is not about learning registry forensics.
It’s about the tools. Of course you might gain some knowledge along the way, but that is
not our purpose here. If you want to look deeper into these registry files and learn more
about the art of registry forensics, then I strongly suggest you look to the excellent book33

written by Harlan Carvey on the subject (and browse his blog34). You might want to have
a basic understanding of registry structure before you begin this exercise, so you have some
context for what’s to come. And, of course there are other (faster and more comprehensive)
ways to parse a registry. For example, Harlan Carvey’s well known RegRipper will run just
fine on Linux.

Our real purpose in this section is to show you how to do this sort of analysis at the byte
level, using some common Linux tools like xxd and tr, rather than relying on more automated
tools to do it for you. What we do here is not much different from what the Perl scripts in
RegRipper do (although we simplify it somewhat here).

First, though, we need to have a registry file to work on. We’ll start with the NTUSER.DAT file
from the AlbertE account in our NTFS file system sample (NTFS_Pract_2017.E01).

We need to make sure we obtain the correct NTUSER.DAT. There are a couple of ways we can
locate and extract the file from a disk image. You can mount the image (in our case using
ewfmount), browse to the file and extract by copying it out of the mounted file system. This
requires a few more steps than we need to do though, so we’ll demonstrate it here with two
simple location methods, and then extract the file with icat.

Since we are targeting the AlbertE account, and we know that a specific user’s NTUSER.DAT

file is in the /Users/$USERNAME/ folder, we can use ifind to target the specific file by name.
To run ifind, we use mmls as we did previously to find the offset to the file system in our
image:

barry@forensicbox:~$ cd NTFS_Pract_2017

33https://www.elsevier.com/books/windows-registry-forensics/carvey/978-0-12-803291-6
34http://windowsir.blogspot.com/

308

https://www.elsevier.com/books/windows-registry-forensics/carvey/978-0-12-803291-6
http://windowsir.blogspot.com/

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

barry@forensicbox:NTFS_Pract_2017$ mmls NTFS_Pract_2017.E01

DOS Partition Table

Offset Sector: 0

Units are in 512-byte sectors

Slot Start End Length Description

000: Meta 0000000000 0000000000 0000000001 Primary Table (#0)

001: ------- 0000000000 0000002047 0000002048 Unallocated

002: 000:000 0000002048 0001023999 0001021952 NTFS / exFAT (0x07)

barry@forensicbox:NTFS_Pract_2017$ ifind -n "users/alberte/ntuser.dat" -o 2048
NTFS_Pract_2017.E01

285

So here we use ifind (find the "inode", or meta-data structure) using -n to find by name, at
the 2048 offset we again found in our NTFS file system image by running mmls. The return
value we get from ifind is 285, the MFT entry for the AlbertE account’s NTUSER.DAT file.

Alternatively, if you want to search for all the NTUSER.DAT files on a system, you could use fls

with the option to recursively list all regular files (-Fr), grepping the output for NTUSER.DAT.
In either case, we again find the MFT entry for AlbertE’s NTUSER.DAT is 285:

barry@forensicbox:NTFS_Pract_2017$ fls -Fr -o 2048 NTFS_Pract_2017.E01 | grep
NTUSER.DAT

r/r 285-128-2: Users/AlbertE/NTUSER.DAT

r/r 286-128-2: Users/ElsaE/NTUSER.DAT

Once you’ve identified the MFT entry using one of the two methods above, you can simply
extract the file with icat, arbitrarily naming the output (we use NTUSER.285 here). Run the
file command to check the resulting type:

barry@forensicbox:~$ icat -o 2048 NTFS_Pract_2017/NTFS_Pract_2017.E01 285 >
NTUSER.285

barry@forensicbox:~$ file NTUSER.285

NTUSER.285: MS Windows registry file, NT/2000 or above

Now that we have the registry file we want we can choose a specific key to search for useful
information. As an example, we’ll look at the UserAssist entries. These entries occur in the
registry when a user executes a program from the desktop. UserAssist entries are located at
Software\Microsoft\Windows\CurrentVersion\Explorer\. For a complete explanation, I refer
you again to the aforementioned book by Harlan Carvey.

So we have our registry file, NTUSER.DAT, and target key, UserAssist. We need software to
access the data. For this, we install libregf:

309

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

barry@forensicbox:~$ su -

Password:

root@forensicbox:~# sboinstall libregf

...

Cleaning for libregf-20190303...

root@forensicbox:~# exit

You can have a look at the utilities that were installed by this package by looking at the
package file in /var/log/packages:

barry@forensicbox:~$ grep usr/bin /var/log/packages/libregf-20190303-x86_64-1_SBo

usr/bin/

usr/bin/regfexport

usr/bin/regfinfo

usr/bin/regfmount

We can see that the package came with three executable programs placed in /usr/bin. We
will concentrate on using regfmount. Much like libewf’s ewfmount (which is also part of the
libyal project) regfmount provides a fuse file system interface to a file object, in this case
a registry file. The usage is very similar. First, we’ll create a mount point in our current
directory, followed with the registry being mounted:

barry@forensicbox:~$

mkdir regmount

barry@forensicbox:~$ regfmount NTUSER.285 regmount/

regfmount 20190303

barry@forensicbox:~$ cd regmount

barry@forensicbox:regmount$ ls

AppEvents/ Control\ Panel/ Environment/ Keyboard\ Layout/ Printers/ System/

Console/ EUDC/ Identities/ Network/ Software/

The registry file NTUSER.285 is mounted using regfmount on the mount point we created,
regmount (in the current directory). When we change to the regmount directory, we see the
contents of the registry file in the same sort of hierarchical structure as would be found in
any other registry viewer. This we can now navigate and view using normal command line
utilities. So let’s navigate to the UserAssist key and view the contents.

barry@forensicbox:~$ cd
Software/Microsoft/Windows/CurrentVersion/Explorer/UserAssist/

310

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

barry@forensicbox:regmount/Software/Microsoft/Windows/CurrentVersion/Explorer/UserAssist$
ls

{CEBFF5CD-ACE2-4F4F-9178-9926F41749EA}/

{F4E57C4B-2036-45F0-A9AB-443BCFE33D9F}/

You can see once we change into that directory our prompt is quite long! I’m going to
abbreviate the command prompt with ... to make the lines more readable. When we run our
ls command, we see two cryptic looking directory (GUID) entries. Change directory into
F4E57C4B-2036-45F0-A9AB-443BCFE33D9F35 and the sub directory Count/(values). Note that
when you type the (values) sub directory, you will need to escape the parentheses with \,
so you will use \(values\).

barry@forensicbox:...UserAssist$ cd \{F4E57C4B-2036-45F0-A9AB-443BCFE33D9F\}/

barry@forensicbox:...443BCFE33D9F\}$ cd Count/\(values\)/

barry@forensicbox:...(values)$

Now have a look at the contents of this directory.

barry@forensicbox:...(values)$ ls

HRZR_PGYFRFFVBA

HRZR_PGYPHNPbhag:pgbe

{0139Q44R-6NSR-49S2-8690-3QNSPNR6SSO8}\\\\Jvaqbjf\ Snk\ naq\ Fpna.yax

{0139Q44R-6NSR-49S2-8690-3QNSPNR6SSO8}\\\\KCF\ Ivrjre.yax

{0139Q44R-6NSR-49S2-8690-3QNSPNR6SSO8}\\\\Npprffbevrf\\\\Cnvag.yax

{0139Q44R-6NSR-49S2-8690-3QNSPNR6SSO8}\\\\Npprffbevrf\\\\Erzbgr\ Qrfxgbc\

↪→ Pbaarpgvba.yax

{0139Q44R-6NSR-49S2-8690-3QNSPNR6SSO8}\\\\Npprffbevrf\\\\Favccvat\ Gbby.yax

{0139Q44R-6NSR-49S2-8690-3QNSPNR6SSO8}\\\\Npprffbevrf\\\\Fgvpxl\ Abgrf.yax

{0139Q44R-6NSR-49S2-8690-3QNSPNR6SSO8}\\\\Npprffbevrf\\\\Jrypbzr\ Pragre.yax

{0139Q44R-6NSR-49S2-8690-3QNSPNR6SSO8}\\\\Npprffbevrf\\\\Pnyphyngbe.yax

{0139Q44R-6NSR-49S2-8690-3QNSPNR6SSO8}\\\\Npprffbevrf\\\\qvfcynlfjvgpu.yax

{0139Q44R-6NSR-49S2-8690-3QNSPNR6SSO8}\\\\Nqzvavfgengvir\ Gbbyf\\\\Pbzchgre\

↪→ Znantrzrag.yax

{9R3995NO-1S9P-4S13-O827-48O24O6P7174}\\\\GnfxOne\\\\Jvaqbjf\ Rkcybere.yax

{9R3995NO-1S9P-4S13-O827-48O24O6P7174}\\\\GnfxOne\\\\Tbbtyr\ Puebzr.yax

{9R3995NO-1S9P-4S13-O827-48O24O6P7174}\\\\GnfxOne\\\\Vagrearg\ Rkcybere.yax

{9R3995NO-1S9P-4S13-O827-48O24O6P7174}\\\\GnfxOne\\\\Zbmvyyn\ Sversbk.yax

{N77S5Q77-2R2O-44P3-N6N2-NON601054N51}\\\\Npprffbevrf\\\\Npprffvovyvgl\\\\Zntavsl.

↪→ yax

{N77S5Q77-2R2O-44P3-N6N2-NON601054N51}\\\\Npprffbevrf\\\\Pbzznaq\ Cebzcg.yax

35This is where bash completion comes in real handy. When using the cd command here, type the first
two characters and hit the <tab> key...The rest will fill in automatically. Best. Feature. Ever

311

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

So if you did any reading on this particular registry key, you’ll find that the above entries
(or "files" in our fuse mounted file system) are ROT 13 obfuscated. This means that the
characters in each string above are swapped a-m or A-M for the corresponding n-z or N-Z, so
an a becomes an n and a b becomes an o, and so on. We can de-obfuscate this text with the
tr command we’ve used previously to replace one character with another. In this case we’ll
be replacing characters n-za-m with a-z, etc. Let’s try this on the repeating string at the
end of every line, .yax:

barry@forensicbox:...(values)$ echo ".yax" | tr ’n-za-mN-ZA-M’ ’a-zA-Z’

.lnk

We can see that the .yax string at the end of each line is actually the .lnk file extension
(indicating a link or shortcut file).

So what’s the best way to run the above tr command on all the files in the /Count/(values)

directory? We can go back to the short bash loop we introduced in the Viewing Files section
of this guide:

barry@forensicbox:...(values)$ for file in *
> do
> echo $file | tr ’n-za-mN-ZA-M’ ’a-zA-z’
> done

UEME_CTLSESSION

UEME_CTLCUACount:ctor

{0139D44E-6AFE-49F2-8690-3DAFCAE6FFB8}\\Windows Fax and Scan.lnk

{0139D44E-6AFE-49F2-8690-3DAFCAE6FFB8}\\XPS Viewer.lnk

{0139D44E-6AFE-49F2-8690-3DAFCAE6FFB8}\\Accessories\\Paint.lnk

{0139D44E-6AFE-49F2-8690-3DAFCAE6FFB8}\\Accessories\\Remote Desktop Connection.lnk

{0139D44E-6AFE-49F2-8690-3DAFCAE6FFB8}\\Accessories\\Snipping Tool.lnk

{0139D44E-6AFE-49F2-8690-3DAFCAE6FFB8}\\Accessories\\Sticky Notes.lnk

{0139D44E-6AFE-49F2-8690-3DAFCAE6FFB8}\\Accessories\\Welcome Center.lnk

{0139D44E-6AFE-49F2-8690-3DAFCAE6FFB8}\\Accessories\\Calculator.lnk

{0139D44E-6AFE-49F2-8690-3DAFCAE6FFB8}\\Accessories\\displayswitch.lnk

{0139D44E-6AFE-49F2-8690-3DAFCAE6FFB8}\\Administrative Tools\\Computer Management.

↪→ lnk

{9E3995AB-1F9C-4F13-B827-48B24B6C7174}\\TaskBar\\Windows Explorer.lnk

{9E3995AB-1F9C-4F13-B827-48B24B6C7174}\\TaskBar\\Google Chrome.lnk

{9E3995AB-1F9C-4F13-B827-48B24B6C7174}\\TaskBar\\Internet Explorer.lnk

{9E3995AB-1F9C-4F13-B827-48B24B6C7174}\\TaskBar\\Mozilla Firefox.lnk

{A77F5D77-2E2B-44C3-A6A2-ABA601054A51}\\Accessories\\Accessibility\\Magnify.lnk

{A77F5D77-2E2B-44C3-A6A2-ABA601054A51}\\Accessories\\Command Prompt.lnk

For review, the first line of a bash loop above means "for every file in the current directory
(*), do the following echo | tr command", followed by the bash keyword done to close the
loop.

You can see from the output that we’ve de-obfuscated the names. The de-obfuscated output

312

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

matches the original output line for line. This means these are the same (third from the
bottom)36:

{9R3995NO-1S9P-4S13-O827-48O24O6P7174}\\\\GnfxOne\\\\Zbmvyyn\ Sversbk.yax

{9E3995AB-1F9C-4F13-B827-48B24B6C7174} \\TaskBar \\Mozilla Firefox.lnk

That particular entry is for a link to Mozilla Firefox. The GUID value in the front of the file
name represents the FOLDERID_UserPinned "known folder"2. If we want to view the contents
or "value" of the entry, we need to use the ROT-13 name on the command line. We can use
xxd to see the raw values in hex.

barry@forensicbox:...(values)$

xxd \{9R3995NO-1S9P-4S13-O827-48O24O6P7174\}\\\\GnfxOne\\\\Zbmvyyn\Sversbk.yax

00000000: 0000 0000 0400 0000 0000 0000 0400 0000

00000010: 0000 80bf 0000 80bf 0000 80bf 0000 80bf

00000020: 0000 80bf 0000 80bf 0000 80bf 0000 80bf

00000030: 0000 80bf 0000 80bf ffff ffff c03a bc03:..

00000040: f8be d201 0000 0000

A count of the number of times this link was used can be found at offset 0x04 (highlighted
in yellow). So this link was accessed 4 times, according to this entry. The date in Windows
FILETIME format can be found at offset 0x3c (highlighted in blue).

While the access count at 0x04 is easy to decipher, the Windows date value is not. I use a
small python script to decode the time value (the number of 100 nanosecond blocks since
January 1, 1601). You can download the python script (WinTime) using wget:

barry@forensicbox:(values)$ wget http://www.linuxleo.com/Files/WinTime -O
~/WinTime.py

Since we are currently in the regmount mount point, be sure to use the wget -O option to
write the file to your home directory (~/WinTime.py). You don’t want to try and download
the file to the current directory (it’s our fuse mounted registry mount point).

Once you have the script, you can copy the hex value and provide it as an argument to
WinTime.py. Be sure to remove the spaces from the value (we’ll use an alternative way of
getting this value from xxd later):

barry@forensicbox:~$ python ~/WinTime.py c03abc03f8bed201

Thu Apr 27 01:45:57 2017

If you did a full install of Slackware, Python should already be on your system. The python
command points to the WinTime.py file we previously named with wget -O. The ~indicates

36The extra escape (\) characters in the obfuscated output is because the ls command escapes the spaces.
The echo command used with the tr command does not.

313

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

the file is in our home directory. This leaves us with a last execution time of April 27 at
approximately 01:45. A complete forensic education regarding registry entries, interpreting
dates and times, and timezone adjustment is far outside the scope of this guide, but make sure
you take time settings, time zones and clock skew into account for any forensic examination
where dates are meaningful. File dates and time stamps are one of the pitfalls of analysis.
Read up on the subject completely before making any interpretations.

At this point it’s time to unmount our fuse mounted registry file. We’ll use the same regmount

mount point in the next exercise.

barry@forensicbox:~$ fusermount -u regmount

11.6.2 Registry Parsing Exercise 2: SAM and Accounts

Let’s look at another registry file, the SAM hive. The SAM hive can have a great deal of
information available if there are local accounts present on the system. Again, we’re not
going to go through a comprehensive analysis, we’re just going to have a look at a few values
of one of the more important keys.

We can grab the SAM hive the same way we did the NTUSER.DAT, first searching for the proper
MFT entry using fls and then using icat to extract the file:)

barry@forensicbox:~$ fls -Fr -o 2048 NTFS_Pract_2017/NTFS_Pract_2017.E01 | grep
SAM

r/r 178-128-2: Windows/System32/config/SAM

So our target MFT entry here is 178. Now we’ll extract with icat and check the file type
again with the file command. The file name we use on the extracted file is arbitrary. Name
it however you like. Consistency is a good idea, though.

barry@forensicbox:~$ icat -o 2048 NTFS_Pract_2017/NTFS_Pract_2017.E01 178 >
SAM.178

barry@forensicbox:~$ file SAM.178

SAM.178: MS Windows registry file, NT/2000 or above

We will use the SAM mount point for this exercise as we did the previous.

barry@forensicbox:~$ regfmount SAM.178 regmount/

regfmount 20190303

314

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

Since we already pulled the NTUSER.DAT file for the AlbertE account, let’s have a look at the
same account in the SAM file. If we change directories down to SAM/Domains/Account/Users,
we’ll see the following list of potential accounts:

barry@forensicbox:~$ cd regmount/SAM/Domains/Account/Users/

barry@forensicbox:...Users$ ls

(values)/ 000001F4/ 000001F5/ 000003E8/ 000003E9/ Names/

What we see in the output above are a series of sub keys (those starting with 00000* that
represent the hex value of account Relative ID. We can translate these with bc, as we would
any hex value:

echo "ibase=16; 000001F4" | bc

But let’s do it all at once with a for loop to repeat the command across all the directories
(but only those that are a hex value):

barry@forensicbox:...Users$ for name in 00000*
> do
> echo "ibase=16; $name" | bc
> done

500

501

1000

1001

If you read up on Windows accounts, you’ll see we have the system administrator
(RID 500), the guest account (RID 501), and a pair of user accounts (1000 and 1001). There
are a number of ways to associate the accounts with particular users, but we will simply
navigate to the values under the 000003E8/ sub key.

barry@forensicbox:...Users$ cd 000003E8/\(values\)/

barry@forensicbox:...(values)$ ls

F UserPasswordHint V

We have three "files" here to look at. A very quick peek at the bottom of the V file shows
the username associated with this account:

barry@forensicbox:(values)$ xxd V

...

315

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

00000160: 0000 0001 0000 0000 0102 0000 0000 0005

00000170: 2000 0000 2002 0000 0102 0000 0000 0005

00000180: 2000 0000 2002 0000 4100 6c00 6200 6500A.l.b.e.

00000190: 7200 7400 4500 0000 0102 0000 0700 0000 r.t.E...........

000001a0: 0300 0100 0300 0100 13c4 df6f 671a 70d2og.p.

000001b0: 0c04 49e1 c16e c39a 0300 0100 0300 0100 ..I..n..........

The red text shows the associated account as that of AlbertE. The UserPasswordHint is fairly
obvious. But let’s have a look at the contents of F:

barry@forensicbox:~$ xxd F

00000000: 0200 0100 0000 0000 678e 5df7 f7c1 d201g.].....

00000010: 0000 0000 0000 0000 20d7 bf15 76ae d201v...

00000020: ffff ffff ffff ff7f 5ce9 5df2 f7c1 d201\.].....

00000030: e803 0000 0102 0000 1402 0000 0000 0000

00000040: 0000 0700 0100 0000 0000 4876 488a 3600HvH.6.

Unlike the V or UserPasswordHint files, F does not display any obvious data. What you are
seeing is account information for the user AlbertE, including:

• Last Login Date : offset 8

• Password Set/Reset Date : offset 24

• Last Failed Login : offset 40

...and other account information (number of logins, RID, etc.). We are going to concentrate
on the dates at the offsets shown above. We’ve already converted similar dates using the
python WinTime.py script. We could type each value on the command line, and run the script
separately for each value. A better way, however, would be to use the command line to give
us just the value we want, and pass each one to the WinTime.py script. We can do this with
a bash for loop. And if you read the man page for xxd, you will see that we can also use
different options for xxd to enable us to complete the date conversion without having to copy
the hex value out.

Let’s look at what happens if we run xxd with -ps (plain hexdump) -s8 (seek to byte 8) -l8

(output is 8 bytes in length). The command prompt has been truncated again for readability
(F is the "file" we are viewing):

barry@forensicbox:(values)$ xxd -ps -s8 -l8 F

678e5df7f7c1d201

We find the date string extracted is exactly the format we need to pass to WinTime.py. In
order to pass the output, we’ll use command substitution. We can do this by using a subshell.

316

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

By running the xxd command in a subshell, we can pass the value of the executed command
similar to a variable using the $. This is done by using $(...) around the xxd

command. This substitutes the output of xxd straight to the argument required for
WinTime.py:

barry@forensicbox:~$ python ~/WinTime.py $(xxd -ps -s8 -l8 F)

Sun Apr 30 21:23:09 2017

This can be taken a step further. We have three separate date values to convert here. One
is at offset 8 (-s8 as we converted above). The others are at offset 24 and 40. Sounds like
a perfect candidate for our now familiar bash for loop. We can use offsets 8, 24 and 40 as
our variable, and pass those into our command substitution for WinTime.py. It should look
something like this:

barry@forensicbox:(values)$ for offset in 8 24 40
> do
> python ~/WinTime.py $(xxd -ps -s$offset -l8 F)
> done

Sun Apr 30 21:23:09 2017

Thu Apr 6 01:35:34 2017

Sun Apr 30 21:23:01 2017

Instead of repeating the command with -s8, -s24 and -s40, we simply create a loop with
$offset and provide the values 8, 24, and 40 in the loop. This gives us the resulting values:

• Last Login Date : Sun Apr 30 21:23:09 2017

• Password Set/Reset Date : Thu Apr 6 01:35:34 2017

• Last Failed Login : Sun Apr 30 21:23:01 2017

Examining Windows registry files in a command line environment may not be the simplest
method, but it is a great way to learn how a registry is parsed, and where information is
located.

11.6.3 Application Analysis: prefetch

Understanding the caveats we provided earlier on the status of many of the libyal projects,
be sure to browse some of them and try them out. Documentation can be sparse in places,
but that’s where experimentation and testing comes in. In many cases, the libraries are
provided to add capabilities to other programs – the provided utilities may simply export
information from an artifact to XML or text format straight to standard output. libscca is
an example of this and is used to access Windows prefetch files.

317

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

Prefetch files can be a useful forensic artifact for any number of reasons. They can provide
additional execution times for timelines, they can be used to prove program execution even
when an executable has been deleted, and they can be used to correlate other artifacts
created during execution. More information can be found on the Internet37.

Let’s have a look at a quick example, after installing libscca:

barry@forensicbox:~$ su -

...

root@forensicbox:~# sboinstall libscca

libscca (libYAL Windows Prefetch File parser)

libscca is a library to access the Windows Prefetch File (SCCA) format.

Proceed with libscca? [y]

Cleaning for libscca-20181227...

root@forensicbox:~# exit

With libscca installed, let’s look for a prefetch file to view. We’ll search the NTFS image
for files ending in .pf. You can see there are quite a few of them (output is truncated).

barry@forensicbox:~$ fls -Fr -o 2048 NTFS_Pract_2017/NTFS_Pract_2017.E01 | grep
.pf$

r/r 72-128-2: Windows/Prefetch/58.0.3029.81_CHROME_INSTALLER-F06A66AC.pf

r/r 73-128-2: Windows/Prefetch/AUDIODG.EXE-BDFD3029.pf

...

r/r 123-128-2: Windows/Prefetch/NMAP.EXE-69B77167.pf

...

r/r 160-128-2: Windows/Prefetch/WORDPAD.EXE-D7FD7414.pf

r/r 161-128-2: Windows/Prefetch/WUDFHOST.EXE-AFFEF87C.pf

Our familiar fls command is executed, looking for files only, recursively (-Fr) in the file
system at offset 2048 (-o 2048) in our NTFS EWF files. Using grep, we are looking for .pf

at the end of the line (signified by the \$). The list is long, but we will look at the NMAP.EXE

prefetch file (MFT entry 123-128-2). We can extract the file from the image with icat:

barry@forensicbox:~$ icat -o 2048 NTFS_Pract_2017/NTFS_Pract_2017.E01 123 >
nmap.pf.123

Let’s very quickly have a look at the header of the file with xxd. You can immediately see
37http://www.forensicswiki.org/wiki/Prefetch is a good start.

318

http://www.forensicswiki.org/wiki/Prefetch

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

why the library we just installed is called libscca. The prefetch header is 84 bytes long with
the version at offset 0x00 and the SCCA header at offset 0x041.

barry@forensicbox:~$ xxd -l 84 nmap.pf.123

00000000: 1700 0000 5343 4341 1100 0000 aeaa 0000SCCA........

00000010: 4e00 4d00 4100 5000 2e00 4500 5800 4500 N.M.A.P...E.X.E.

00000020: 0000 0200 0000 0000 d935 a382 c07b 719d5...{q.

00000030: bb36 a382 0100 0000 483d 4087 1100 0000 .6......H=@.....

00000040: 483d 4087 c029 3685 0000 0000 6771 b769 H=@..)6.....gq.i

00000050: 0000 0000

Some of the features we can find (be careful of byte ordering):

prefetch version = 0x0017 (Version 23 - Windows 7)
SCCA header = 0x5343 0x4341 (SCCA)
executable name = 0x4e 0x4d 0x41 0x50 0x2e 0x45 0x58 0x45 (NMAP.EXE)

prefetch hash = 0x69b7 0x7167 (matches the hash in the .pf filename)

The latest execution time can be fount at offset 128 in the prefetch file (8 bytes long), and
we can use WinTime.py again to decipher it:

barry@forensicbox:~$ python WinTime.py $(xxd -s 128 -l8 -ps nmap.pf.123)

Thu Apr 6 15:07:20 2017

Given enough information about the format, you could spend a lot of time parsing the file.
There’s other information stored within, including libraries and other files accessed when the
executable is started. But from here we’ll use sccainfo from libsccato view the prefetch file
contents, which is quite extensive.

barry@forensicbox:~$ sccainfo nmap.pf.123

sccainfo 20181227

Windows Prefetch File (PF) information:

Format version : 23

Prefetch hash : 0x69b77167

Executable filename : NMAP.EXE

Run count : 9

Last run time: : Apr 06, 2017 15:07:20.470652700 UTC

Filenames:

Number of filenames : 53

Filename: 1 : \DEVICE\HARDDISKVOLUME2\WINDOWS\SYSTEM32\NTDLL.DLL

Filename: 2 : \DEVICE\HARDDISKVOLUME2\WINDOWS\SYSTEM32\KERNEL32.DLL

...

Volumes:

319

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

Number of volumes : 1

Volume: 1 information:

Device path : \DEVICE\HARDDISKVOLUME2

Creation time : Apr 06, 2017 04:48:55.209910400 UTC

Serial number : 0x5019050c

There are numerous utilities available to Linux users that can be found to assist in parsing
files, artifacts and other data recovered from computers running operating systems other
than Linux. There are, in fact, too many to list here. Sometimes it’s simply a matter of
finding a comparable open source project: like using LibreOffice to view Microsoft Office or
Visio files. There are also the simple utilities that are either pre-installed or easily installed
on your Linux distribution, like antiword or tools like pdfinfo and exiftool for reading file
metadata. There are too many to list here, but suffice to say that over the past few years
application layer analysis has become much easier on Linux.

320

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

12 Basic Network Investigation Tools

In the preceding sections we’ve covered a great many tools that allow us to acquire and
examine disk images and file system volumes. However, nowadays that’s generally not the
limit of investigative support. We often find ourselves in the online realm, where we need to
do name resolution, IP address investigations and other network queries. We regularly need
to find contact information for legal process to obtain subscriber, registrar and other online
account information related to both victims of crimes and perpetrators.

In this chapter we’ll cover some basic tools that will allow you to answer some of the common
questions regarding online accounts, addresses and other resources.

For many of these fundamental lookups we can use informational websites like
centralops.net or any of the WHOIS sites. But why fire up a web browser and type in
dialog boxes when you can just as easily run a simple command to get the same (and often
cleaner) output? In addition, with command line arguments you can more easily redirect
output to a file for simple note taking.

12.0.1 IP Address Lookup

One of the more common network investigative tasks we encounter is a simple Domain Name
Service (DNS) lookup to associate a domain name with an IP address. This is the DNS ’A’
record for a domain. There are several tools that will provide this information. We’ll look
at the host command, nslookup, and dig.

The host command is available on most operating systems, and on Linux is as simple to use
as on any other platform. You can specify the ’type’ of DNS record you want to look up
with the -t. For example, to get the ’A’ (address) record for linuxleo.com:

barry@forensicbox:~$ host -t A linuxleo.com

linuxleo.com has address 74.208.236.144

The nslookup command is considered ’deprecated’, but we’ll show it here for completeness
as it’s still widely used (dig is the preferred DNS lookup tool). nslookup provides similar (if
somewhat more verbose) output:

barry@forensicbox:~$ nslookup linuxleo.com

Server: 192.168.86.1

Address: 192.168.86.1#53

Non-authoritative answer:

Name: linuxleo.com

Address: 74.208.236.144

321

centralops.net

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

The Server and Address information at the top of the nslookup output comes from the
network gateway that’s listed in the file /etc/resolv.conf (in this case the gateway is also
our DNS server - as indicated by the #53 for the standard DNS port).

We can also use the dig command, another DNS query tool with tons of built in flexibility
and a bit more functionality than host or nslookup. For simple use, we can just pass dig the
hostname that we want to lookup:

barry@forensicbox:~$ dig linuxleo.com A

; <<>> DiG 9.16.5 <<>> linuxleo.com A

;; global options: +cmd

;; Got answer:

;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 46296

;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 1

;; OPT PSEUDOSECTION:

; EDNS: version: 0, flags:; udp: 512

;; QUESTION SECTION:

;linuxleo.com. IN A

;; ANSWER SECTION:

linuxleo.com. 3599 IN A 74.208.236.144

;; Query time: 54 msec

;; SERVER: 10.0.2.3#53(10.0.2.3)

;; WHEN: Mon Sep 07 17:01:01 EDT 2020

;; MSG SIZE rcvd: 57

We’ve used the dig command above with the domain name we want to lookup
(linuxleo.com) and A to obtain the A (address) record. Look under the ANSWER SECTION for
the IP address we are looking for.

Since the A record is the default anyway, you don’t really need to pass that argument. And
if you want to get down to just a simple answer without all the extra noise, you can pass
the +short command option to display only the answer to the specific query being made.

barry@forensicbox:~$ dig linuxleo.com +short

74.208.236.144

What about your own IP address? Of course, we’ve already learned how to determine the
local IP address of a machine with the ip addr command. If I want to know what my public
facing IP address is then I can use several methods. One of the more simple is to query the
URL ifconfig.me using a simple network command called curl. curl is a utility used for
transferring data across a network. In this case we simply use it to request information the

322

ifconfig.me

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

we [present] to servers we visit. One simple use is just the command with the ifconfig.me

URL as an argument:

barry@forensicbox:~$ curl ifconfig.me

98.233.62.28

Knowing what IP address you present to the external world can be important if you want to
check that your VPN is working properly or that you are not revealing yourself as originating
from an IP address you’d rather not show up in someone’s logs.

12.0.2 Mail Exchange Lookup

Looking up IP address records is only part of the puzzle in many cases. Email addresses
very often play into investigations. When preparing legal process to obtain email account
information from a provider, you want to make sure you know who to send it to. A suspect
email account from the comcast.net domain would most likely require that you send process
to comcast.net, but can you always be sure that every domain handles its own email delivery?
In order to check who handles the email exchange for a given domain, we check the DNS
’MX’ records.

This can be done with the tools we’ve introduced already. For both the host command and
the dig command you simply need to specify that you want to see the MX records for a given
domain. We’ll use the +short option for abbreviated output with dig.

barry@forensicbox:~$ host -t MX linuxleo.com

linuxleo.com mail is handled by 10 mx01.1and1.com.

linuxleo.com mail is handled by 10 mx00.1and1.com.

barry@forensicbox:~$ dig linuxleo.com MX

10 mx01.1and1.com.

10 mx00.1and1.com.

In both cases we see that email for the domain linuxleo.com is actually handled by
"1and1". This is very common for hosting companies, of course. But you’ll also see it for
large institutions that use Google, Inc. or other enterprise solutions for their networking
needs (Google calls it ’G Suite’). University College Dublin (ucd.ie) is an example:

barry@forensicbox:~$ dig ucd.ie MX +short

10 aspmx3.googlemail.com.

5 alt2.aspmx.l.google.com.

5 alt1.aspmx.l.google.com.

10 aspmx2.googlemail.com.

1 aspmx.l.google.com.

323

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

So we see UCD actually uses Gmail for their email services.

12.1 Whois data

Knowing the IP address or domain name is part of the information. We also need to know
who the registrant and perhaps the registrar is. This also helps us to identify who we might
need to serve legal process to obtain additional leads.

As with dig and host, etc. most investigators use web sites like the previously mentioned
centralops.net to look up this information. We will quite simply use whois on the command
line. Let’s look again at linuxleo.com. We already know the IP address (74.208.236.144),
and we also know the email is handled by "1and1". Now let’s look at the whois data. We’ll
pipe this through less to make it more readable, and use the -H option to suppress legal
warnings. The output shown below is abbreviated.

barry@forensicbox:~$ whois linuxleo.com | less

Domain Name: LINUXLEO.COM

Registry Domain ID: 1243007046_DOMAIN_COM-VRSN

Registrar WHOIS Server: whois.ionos.com

Registrar URL: http://www.ionos.com

Updated Date: 2019-09-28T07:32:07Z

Creation Date: 2007-09-27T17:03:33Z

Registry Expiry Date: 2020-09-27T17:03:33Z

Registrar: 1&1 IONOS SE

Registrar IANA ID: 83

Registrar Abuse Contact Email: abuse@ionos.com

Registrar Abuse Contact Phone: +1.6105601459

Domain Status: clientTransferProhibited https://icann.org/epp#

↪→ clientTransferProhibited

Name Server: NS1066.UI-DNS.BIZ

...

Domain Name: linuxleo.com

Registry Domain ID: 1243007046_DOMAIN_COM-VRSN

Registrar WHOIS Server: whois.ionos.com

Registrar URL: http://ionos.com

Updated Date: 2018-03-14T14:06:51.000Z

Creation Date: 2007-09-27T17:03:33.000Z

Registrar Registration Expiration Date: 2020-09-27T17:03:33.000Z

Registrar: 1&1 IONOS SE

Registrar IANA ID: 83

Registrar Abuse Contact Email: abuse@ionos.com

Registrar Abuse Contact Phone: +1.8774612631

Registry Registrant ID: REDACTED FOR PRIVACY

Registrant Name: REDACTED FOR PRIVACY

324

centralops.net

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

Registrant Organization: 1&1 Internet Inc

Registrant Street: REDACTED FOR PRIVACY

Registrant City: REDACTED FOR PRIVACY

Registrant State/Province: PA

Registrant Postal Code: REDACTED FOR PRIVACY

Registrant Country: US

...

Some obvious bits of information are shown here. The registrar is IONOS, and the domain
was registered in 2007, giving us some domain history. The registrant (the likely owner)
is set as PRIVATE, which is very common. This does, however give enough information
about the domain to allow us follow up with whatever investigative process is allowed in
your jurisdiction.

12.2 MAC Address Lookup

We can round out this section on passive network information gathering by looking at Media
Access Control (MAC) addresses. The MAC address is a ’physical’ address given to a network
interface that operates at a different level than the IP address. Along with IP addresses,
MAC addresses are part of the OSI model that standardizes communication models for
networks 38.

MAC addresses are used by routers and other network devices to help properly identify
network traffic and direct packets to the appropriate destination (lookup Address Resolution
Protocol for more information). MAC addresses will often be recorded in logs for use in
troubleshooting and network debugging. They are also useful investigative tools, perhaps
allowing an investigator to differentiate two different devices connected to a wireless hot spot,
for example. This is because MAC addresses are ’vendor specific’, and are standardized by
IEEE for communication interfaces including wireless, Bluetooth, and Ethernet. We can
use an IEEE published list of Organizationally Unique Identifiers to help use determine the
manufacturer of a network interfaces from the MAC address found in logs.

First we download the oui.txt file, a listing of MAC identifiers for registered manufacturers,
from IEEE. Then we grep for the first hexadecimal values in the MAC address. We can use
our own network interface MAC address as in the following example:

Download oui.txt:

barry@forensicbox:~$ wget http://standards-oui.ieee.org/oui.txt

--2020-09-07 21:48:42-- http://standards-oui.ieee.org/oui.txt

Resolving standards-oui.ieee.org (standards-oui.ieee.org)... 140.98.223.27

38The OSI model is an important part of understanding how networks interoperate. I strongly suggest
becoming familiar with it.

325

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

Connecting to standards-oui.ieee.org (standards-oui.ieee.org)|140.98.223.27|:80...

↪→ connected.

HTTP request sent, awaiting response... 200 OK

Length: 4526692 (4.3M) [text/plain]

Saving to: ’oui.txt’

oui.txt 100%[===============================>] 4.32M 1.60MB/s in 2.7s

2020-09-07 21:48:45 (1.60 MB/s) - ’oui.txt’ saved [4526692/4526692]

This places the oui.txt file of MAC address information in our current directory. For an
example, we can lookup our current network interface MAC address. In this case my current
interface is a wireless network USB dongle. I’ll use the ip addr command to find the MAC
(highlighted in red).

barry@forensicbox:~$ /sbin/ip addr show wlan0

3: wlan0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc ...

link/ether 9c:ef:d5:fd:aa:ce brd ff:ff:ff:ff:ff:ff

inet 192.168.86.22/24 brd 192.168.86.255 scope global dynamic

...

Using the first three hexadecimal numbers (without the separating colon), I can grep the
oui.txt file to find the manufacturer of my network interface:

barry@forensicbox:~$ grep -i 9cefd5 oui.txt

9CEFD5 (base 16) Panda Wireless, Inc.

And in this case the output is correct. The network interface is identified as a Panda Wireless
dongle. The usefulness of this information varies, but at some point you will likely need to
resolve a MAC address to a manufacturer. This is a simple way to do it.

This has been an extremely brief introduction to some of the most basic network tools we can
use from the command line. There is an emphasis on ’brief’ here because this chapter barely
scratches the surface of the network reconnaissance capabilities of the Linux command line.
Slackware ships with nmap built in for scanning hosts and network blocks, and there are
tools like dnsmap and dmitry available in software repositories. Make sure when using these
tools that you have appropriate permissions to scan and reconnoiter the networks you target
- even for practice.

Long gone are the days where ’dead box’ forensics alone could get you by as an examiner/in-
vestigator. A basic knowledge of network investigations is now a requirement for success.

326

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

13 Integrating Linux with Your Work

This guide has covered a myriad of subjects that really just touch the surface of the command
line capabilities of Linux as a forensic platform. And while it is a lengthy guide, it still only
imparts a basic set of commands and utilities to allow you to learn and grow as a forensic
examiner or digital investigator. The real power of Linux (as an heir of UNIX itself) is in
thinking in UNIX. The more you use commands and get used to the output they present,
the more you will learn to string them together, solving increasingly complex issues quickly
and efficiently. Getting a solid grasp of commands, command history, pipes and redirection
is a liberating process.

Some of the repeated exercises we’ve done here were designed to kick start the repetition
needed to anchor the command line process into memory. It is not, however, realistic to
expect that everyone will suddenly convert to Linux and forego other operating systems
for forensic analysis. Linux is, at the end of the day, just another platform and tool set.
I maintain that it is a useful tool set, and that there is some value in every examiner at
least being familiar with it and the tools it provides. We’ve talked about how the command
line tools we’ve encountered here (and there are many more) are unique when compared to
common Windows tools. Much of this difference arises from the fact that they are generally
designed with the UNIX approach of "do one thing and do it well". We see this in tools
like grep, head, tail, tr, sed and utilities like icat, blkls and antiword. They provide
discrete output when run on their own, but as you start piping them together, we end up
accomplishing multiple steps in the same command line. This becomes very powerful not
only when you learn what each tool is capable of, but when you also start to think in terms
of a modular command line. Learning and remembering all this, however, means more of a
burden on examiner resources. And so, one of the strengths of Linux is also, in fact, one of
its weaknesses when it comes to mass appeal in the forensic community.

So how do we continue to use Linux, maintain what we’ve learned and continue learning,
while still remaining efficient? Here we will talk about how you can integrate a Linux
platform into you current lab or examination processes and continue to use it, if not on a
daily basis, at least enough to maintain (and continue growing) the skills we’ve introduced
here.

We’ve seen tools in this guide that can be used to access file data, file system data, volume
information, and block information, etc. It can be done quickly and without the need
for licenses or excessive resources to load and view targeted information. Being able to
accomplish this on full disk image or blocks of separated data (like the unallocated output
of blkls, for example), and even individual files, makes Linux an excellent platform for both
tool validation and the cross-verification of findings.

Validation, in this context, can be seen as comparing the output of different tools to test
specific software functions (or in some cases, hardware functions) and hopefully determine
that the expected output is actually produced. If your lab or organization has validation
standards for forensic software and hardware, you can strengthen these by not only confirm-

327

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

ing similar functions in multiple tools, but by comparing the output of the tool being tested
(a function of commercial software on Windows, for example) to an open source tool on
an alternative (and also open source) operating system. Conclusive validation of functional
output is far easier to ascribe to test results when those results are from entirely different
systems. Linux can provide that environment where separate tools are running on an en-
tirely different operating system kernel and environment completely, removing any potential
appearance of interference.

We can also use Linux for cross-verification. In those cases where you find specific evidence
with one of your standard commercial forensic tools, you can verify those results by com-
paring them on an alternative operating system with alternative tools. This is not the same
as validation. In this case we are not testing a function, we are confirming a finding. For
example, you might find a file or set of files pertinent to an investigation. The files were
found in a particular volume, in a particular block (or cluster) that was associated with a
particular meta-data entry (e.g. MFT). Running mmls, blkstat and ifind, etc. can help us
verify those findings taken from a commercial tool. In cases where the data recovered may
be contested or your recovery process inspected, having this cross-verification can render
arguments against your procedures or tools more difficult.

As a very simple example, let’s look at the SAM registry file that we worked on in the
section covering application layer analysis. If we commonly use Windows as our standard
forensic platform, we might extract registry files with Access Data’s FTK and use tools like
RegRipper to parse them. If that was the case with the SAM file we examined previously,
then I might have found the following information: Parsing the file for user data, we may

Figure 30: SAM file examined with a common Windows tool

find that the last login for the user AlbertE is critical to our case and the data found might
come up in testimony. Output of our primary registry analysis shows the following (output
from an examination using Windows tools):

328

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

Username : AlbertE [1000]

Full Name :

User Comment :

Account Type : Default Admin User

Account Created : Thu Apr 6 01:35:32 2017 Z

Name :

Password Hint : InitialsInCapsCountToFour

Last Login Date : Sun Apr 30 21:23:09 2017 Z

Pwd Reset Date : Thu Apr 6 01:35:34 2017 Z

Pwd Fail Date : Sun Apr 30 21:23:01 2017 Z

Login Count : 7

Because of the importance of this particular evidence to the case, we decide to cross verify
the output using completely unrelated tools under Linux (we covered the steps previously).
Looking at the MFT entry with TSK’s istat, we can verify information found in our Windows
software. The following istat command confirms the file dates and time, the size, and the
location of the file.

barry@forensicbox:~$ istat -o 2048 NTFS_Pract_2017/NTFS_Pract_2017.E01 178

MFT Entry Header Values:

Entry: 178 Sequence: 1

...

Created: 2017-05-01 09:00:42.659179200 (EDT)

File Modified: 2017-05-01 12:39:35.889046400 (EDT)

MFT Modified: 2017-05-01 09:00:42.676485200 (EDT)

Accessed: 2017-05-01 09:00:42.676286700 (EDT)

$FILE_NAME Attribute Values:

Flags: Archive

Name: SAM

Parent MFT Entry: 69 Sequence: 1

Allocated Size: 262144 Actual Size: 262144

Created: 2017-05-01 09:00:42.659179200 (EDT)

File Modified: 2017-05-01 12:39:35.889046400 (EDT)

MFT Modified: 2017-05-01 09:00:42.676286700 (EDT)

Accessed: 2017-05-01 09:00:42.676286700 (EDT)

Attributes:

Type: $STANDARD_INFORMATION (16-0) Name: N/A Resident size: 48

Type: $FILE_NAME (48-4) Name: N/A Resident size: 72

Type: $SECURITY_DESCRIPTOR (80-1) Name: N/A Resident size: 80

Type: $DATA (128-2) Name: N/A Non-Resident size: 262144 init_size: 262144

95487 95488 95489 95490 95491 95492 95493 95494

95495 95496 95497

...

329

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

Note that the times are different. Obviously this is because of the application of time zones.
Differences in the output are not disqualifying as cross-verification if you are able to explain
why the difference occurs. This is the foundation of knowing how your software works.

Looking at the output of the Windows software registry parsing, we can verify with com-
mands we used previously (see section 11.6.2 (SAM parsing) on page 314 for a refresher):

barry@forensicbox:(values)$ xxd F

00000000: 0200 0100 0000 0000 678e 5df7 f7c1 d201g.].....

00000010: 0000 0000 0000 0000 20d7 bf15 76ae d201v...

00000020: ffff ffff ffff ff7f 5ce9 5df2 f7c1 d201\.].....

00000030: e803 0000 0102 0000 1402 0000 0000 0000

00000040: 0000 0700 0100 0000 0000 4876 488a 3600HvH.6.

Last Login Date: offset 8

barry@forensicbox:(values)$ python ~/WinTime.py $(xxd -ps -s8 -l8 F)

Sun Apr 30 21:23:09 2017

So with a simple few steps we’ve confirmed critical output, using different tools on a different
platform, which can hopefully strengthen any testimony we may be required to give on the
findings.

Cross verification can also be used to confirm the very first and most important step of any
forensic process: the acquisition and proper handling of collected evidence. We can verify
other tools’ media hashes, collection hashes, or media identification.

If you can find a way to add Linux to your workflow, you could keep your skills current,
learn additional skills, and perhaps even learn to automate some of this workflow through
scripting. There are several ways you can deploy Linux in your work, including virtual
machines, standalone workstations, and bootable distributions.

Virtual machines (VM) are growing in popularity, and have been for years. There are free
options (like VirtualBox Qemu) that are quite robust and offer excellent compatibility and
configuration options for a forensic examiner. You can run a VM on your main forensic
workstation and provide it access to evidence folders and files, allowing direct interface
between the tool and the target image. VMs also have a "snapshot" feature so that when
work is complete, a snapshot of a clean and periodically updated operating system can be
restored. Also note that VMs can be run the other way – I normally run Windows in a
VM on a physical Slackware Linux workstation. The reason I do this highlights one of the
drawbacks of VM usage – direct access to hardware. A VirtualBox VM, for example, will
allow connections via a virtual USB controller. There are, however, times where I would
want to query directly connected devices without the need of a virtual bridge. I prefer to

330

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

use Linux for that, so Windows is relegated to a VM and Slackware is given direct access to
hardware. That, however, is a matter of personal preference.

The other obvious way to run Linux is to have an actual dedicated workstation. This is fine
if you have one you can devote to the purpose, and it alleviates the aforementioned hardware
access and interrogation issues. A full work station is particularly useful where you might
want to validate or cross verify hardware identification or enumeration. Having a physical
workstation requires more monetary resources and can require more configuration effort for
exotic or less common hardware, but it also provides the most complete forensic access for
the operating system to interact with attached hardware.

The final way you can continue using Linux is through a bootable distribution. These are
always handy to keep around for times where you may need to boot a subject computer
to acquire evidence or even conduct a limited examination without imaging internal media.
We used this approach in our "dd over the wire" exercise. There are a number of good
bootable distributions available suitable for forensic use. Download a couple, try them out,
and see what works best for you. It may be a good idea to have several different versions
for different scenarios or hardware configurations. Two bootable Linux variants that come
to mind immediately are Caine and Kali Linux:

Caine: http://www.caine-live.net/
Kali: https://www.kali.org/

331

http://www.caine-live.net/
https://www.kali.org/

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

14 Conclusion

The examples and practical exercises presented to you here are relatively simple. There
are quicker and more powerful ways of accomplishing some of what we have done in this
document. The steps taken in these pages allow you to use common Linux tools and utilities
that are helpful to the beginner. We’ve also incorporated more advanced tools and exercises
to add some "real world" applicability.

Once you become comfortable with Linux, you can extend the commands to encompass
many more options. Practice will allow you to get more and more comfortable with piping
commands together to accomplish tasks you never thought possible with a default OS load
(and on the command line to boot!). The only way to become proficient on the command
line is to use it. And once you get there, you may have a hard time going back.

I hope that your time spent working with this guide was a useful investment. At the very
least, I’m hoping it gave you something to do, rather than stare at Linux for the first time
and wonder "what now?"

332

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

15 Linux Support

Aside from the copious web site references throughout this document, there are a number
of very basic sites you can visit for more information on everything from running Linux to
using specific forensic tools. Here is a sample of some of the more informative sites you will
find:

15.1 Places to go for Support

Slackware. Just one of many Linux distributions.
http://www.slackware.com

Learn Slackware (Slackware Linux Essentials):
https://slackbook.org/beta/

The "unofficial" official source for online assistance is the Slackware forum at
linuxquestions.org:

http://www.linuxquestions.org/questions/slackware-14/

Sleuth Kit Wiki:
http://wiki.sleuthkit.org
Sleuth Kit Forum:
https://sleuthkit.discourse.group/

The Linux Documentation Project (LDP):
http://www.tldp.org

In addition to the above list, there are a huge number of user forums, some of which are
specific to Linux and computer forensics:

http://www.forensicfocus.com

IRC (Internet Relay Chat):

Try ##slackware on the Freenode network (or other suitable channel for your Linux distri-
bution of choice).

A Google search will be your very best friend in most instances.

333

http://www.slackware.com
https://slackbook.org/beta/
http://www.linuxquestions.org/questions/slackware-14/
http://wiki.sleuthkit.org
https://sleuthkit.discourse.group/
http://www.tldp.org
http://www.forensicfocus.com

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

List of Figures

1 XFCE with USB volume Corsair_32G inserted 43

2 Right-click context menu for disk mounting [XFCE] 44

3 XFCE Removable Media Dialog . 45

4 XFCE default terminal prompt . 70

5 XFCE terminal preferences . 71

6 XFCE login terminal . 71

7 Installation - netconfig . 75

8 NetworkManager - Ethernet connection . 77

9 NetworkManger - Wireless connection . 77

10 Hardware details on a drive label . 114

11 Example network acquisition diagram . 153

12 Viewing an image with a mis-matched extension 204

13 An example of layers and their associated content based on Carrier’s work . 230

14 The image produced by display when used directly from icat 246

15 The sector offset in able2.dd where the search hit was found. 253

16 The volume offset in able2.dd where the search hit was found. 254

17 The offset to the keyword in the volume . 254

18 Identifying the data block of the keyword . 255

19 Single calculation to identify the data block of the keyword 256

20 A simple example of how blkcalc is used to determine the original address of
an unallocated data unit . 265

21 Screenshot of LibreOffice viewing a recovered MS Office Document 279

22 Viewing carved files with geeqie . 296

23 qphotorec - GUI front end for photorec . 298

334

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

24 photorec main menu . 299

25 photorec running on the able3.home.blkls file 300

26 Viewing photorec options in the running program 300

27 photorec file options menu . 301

28 photorec file system selection . 302

29 photorec file system selection . 302

30 SAM file examined with a common Windows tool 328

335

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

List of Command Examples

1 su session . 22

2 Determine the Kernel Version . 24

3 List of PCI devices with lspci . 25

4 Determine the driver (module) in use . 26

5 Contents of /etc/modprobe.d/README . 26

6 List USB devices with lsusb . 26

7 List USB devices with usb-devices . 27

8 Devices listed with lsblk . 30

9 Output of lsscsi . 30

10 Output of lsscsi . 31

11 Viewing Partition Tables with fdisk . 31

12 Viewing Partition Tables with gdisk . 32

13 Finding USB device assignment with dmesg 33

14 Finding USB device assignment in real-time 34

15 dmesg output with NVMe . 34

16 Creating a mount point as root . 38

17 Collecting information to mount a volume 39

18 Mounting a partition . 39

19 Change Directory to the mountpoint . 39

20 umount command . 40

21 Identifying the File System on an Optical Disk 40

22 Mounting Optical Media . 40

23 Unmount/mnt/cdrom . 41

336

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

24 Output of mount command . 41

25 Listing mounted volumes with findmnt . 41

26 The /etc/fstab file . 42

27 fstab mounting . 42

28 Determining device volume by label . 44

29 Using findmnt --real to check a desktop mounted volume: 44

30 Using the udisks2 udisksctl command . 45

31 Unmounting with udisksctl . 46

32 Simple ls command . 47

33 Using the man command . 49

34 Using the find command . 49

35 pwd example . 50

36 Using the file command . 50

37 Using the ps command . 50

38 Viewing file permissions with ls -l . 51

39 Changing file permissions with chmod . 52

40 Redirecting output . 53

41 Redirecting output (append) . 53

42 Comparison of pipes and redirection . 54

43 Output of ps . 54

44 Output of ps piped through grep . 55

45 Using the tee command . 55

46 Listing file attributes with lsattr . 56

47 Changing file attributes with chattr . 56

48 Try to remove an immutable file . 56

337

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

49 Adding the append only attribute . 57

50 Using bc . 57

51 Setting the scale in bc . 58

52 Non interactive bc session with a pipe . 58

53 Convert Hex with bc . 59

54 Bash shell arithmetic . 59

55 Example lilo.conf . 65

56 Viewing the boot messages with dmesg . 65

57 Viewing the default runlevel . 67

58 Contents of .bash_profile . 72

59 Contents of .bashrc . 72

60 eth0 entry for /etc/rc.d/rc.inet1.conf using a static IP address 76

61 eth0 entry for /etc/rc.d/rc.inet1.conf using DHCP 76

62 /etc/rc.d/rc.inet1.conf while running Network Manager 78

63 Using ifconfig to view your IP address . 78

64 Using ip addr to view your IP address . 79

65 Using nmcli to view network connections . 80

66 Using ping to test IP routing/connection . 81

67 Using netstat to view network ports and connections 82

68 Using ss to view network ports and connections 83

69 Using lsof to identify an ope TCP port . 83

70 Calling the network daemons script from rc.M 85

71 OpenSSH being started from rc.inet2 . 85

72 Permissions of rc.sshd . 86

73 Changing permissions to prevent SSH from starting at boot 86

338

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

74 Preventing service start with chmod 644 . 87

75 Reading rc script comments . 87

76 Successful Connection with SSH . 88

77 Editing /etc/hosts.deny . 88

78 SSH session denied via /etc/hosts.deny . 89

79 Edited /etc/hosts.allow to permit SSH on the local network 89

80 Listing empty iptables rules . 91

81 Unfiltered ping (no iptables rules) . 91

82 Edited /etc/rc.d/rc.firewall . 91

83 Putting our firewall rules in place (iptables) 92

84 Viewing the iptables rules after starting the iptables firewall script 93

85 Ping attempt with the iptables rules in place 93

86 Selecting a package mirror . 95

87 Editing the blacklist file . 96

88 Compiling from source . 98

89 Installing from source . 99

90 Installing a package with installpkg . 99

91 Installing sbotools with a SlackBuild . 101

92 Viewing a SlackBuild .info file . 102

93 Creating the sbotools Slackware package with a SlackBuild 103

94 Installing the sbotools package . 104

95 Fetching the SlackBuilds repository . 104

96 Searching for software with sbotools . 106

97 Using sbofind to read a README . 106

98 Setup commands for clamav . 107

339

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

99 Viewing README for lshw using sbofind . 107

100 Installing lshw . 108

101 Listing installed SlackBuild packages using grep 109

102 Checking for software updates with sbocheck 109

103 Mounting target and checking for destination drive freespace with df -h . . 112

104 Running lsusb to detect a SATA USB bridge 114

105 Using lsscsi to ID an attached USB to SATA drive 115

106 Using hdparm on a subject disk . 115

107 Redirecting hdparm output to a file . 117

108 Using hdparm to detect an HPA . 118

109 hdparm showing the existence of an HPA . 118

110 Obtaining a SHA1 disk hash . 120

111 Redirecting hash output to a file . 120

112 Sample dd command (basic) . 122

113 Comparing device hash to image hash . 122

114 Splitting an image with split . 123

115 Listing the split image files . 123

116 Re-assembling split image files with cat and redirection 124

117 Obtaining a hash of split images with cat . 124

118 Splitting images ’on the fly’ with dd and split 124

119 Session example of imaging and splitting a USB thumb drive 125

120 Basic dc3dd command on an 80GB disk . 128

121 The dc3dd FMT option . 129

122 Split and hased images with a logfile using dc3dd 131

123 Listing dc3dd split images . 132

340

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

124 Collecting concurrent images with dc3dd . 133

125 Installing libewf . 134

126 Example run of ewfacquire . 135

127 ewfacquire with command options . 137

128 Using ewfinfo to read EWF metadata . 138

129 ewfinfo on an image collected under Windows 139

130 Verifying the hash of an EWF image with ewfverify 140

131 Downloading the sample EWF files with wget 140

132 Viewing the contents of the downloaded tar archive 141

133 Extracting the E01 sample tar file . 141

134 Viewing the sample E01 file metadata with ewfinfo 141

135 Verifying the sample E01 file with ewfverify 142

136 Viewing the size of the ewfexport raw image 143

137 dd with conv=noerror,sync . 144

138 Running dd on a disk with errors . 145

139 Interrupting ddrescue on a good disk . 147

140 Viewing the interrupted map file . 148

141 Viewing the size of partial ddrescue recovery 149

142 Completing the ddrescue image and viewing the map file (good disk) 149

143 First stage - Collecting good data from a bad disk with ddrescue 151

144 Second stage imaging with ddrescue (bad disk) 151

145 Using ifconfig on a collection workstation 154

146 Setting the interface with ifconfig . 154

147 Checking connectivity with ping (Subject Computer to workstation) 155

148 Checking the hash of the subject computer (bootdisk) 155

341

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

149 Starting the listening nc process on the evidence collection workstation . . . 156

150 Starting the imaging process on the subject computer 156

151 Output from our over the wire dd command on the subject computer 156

152 Check the hash of the dd network image . 157

153 Using dc3dd over the network . 157

154 Output of dc3dd on an network acquisition 158

155 Checking the hash of the network acquired dc3dd images 158

156 Checking the MD5 on the subject computer to compare with ewfverify . . . 160

157 Checking the hash of our image prior to compression 162

158 Simply compressing a file with gzip . 163

159 Simply decompressing a file with gzip -d . 163

160 Compressing and decompressing to a new file 163

161 Compressing and checking a hash without decompressing 164

162 Imaging and hashing with direct compression 165

163 Using compression on the fly over the network with gzip and dc3dd 166

164 Compressing over the network with gzip from the subject computer 166

165 Viewing the resulting log file from a dc3dd network acquisition with compression167

166 Wiping a disk with dd . 168

167 Wiping a disk with dc3dd . 168

168 Confirming a zero’d drive with xxd . 169

169 Using dc3dd to wipe with the hwipe option 169

170 Viewing partition information on a physical disk with fdisk 171

171 Viewing partition information on a physical disk with gdisk 171

172 Redirecting gdisk output to a file . 172

173 Downloading our FAT image with wget . 173

342

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

174 Running the file command on our FAT iamge 173

175 Using the file command on a block device 173

176 Mounting our FAT image using the loop device 174

177 Chekcing mount options with the mount command 175

178 Using umount to unmount the FAT file system 175

179 Viewing loop devices in the /dev directory 175

180 Using losetup to associate a file with a device 175

181 Mounting the newly associated loop device 176

182 Removing a loop association with losetup -d 177

183 Using offsets to loop mount a partition in an image 178

184 Using math expansion in the mount command to find the sector offset 179

185 Using mount and losetup to access a partition within an NTFS image 179

186 Downloading the losetup -P practice image 180

187 Using losetup with partition options . 181

188 Listing the /dev/loopXpY nodes produced by losetup -P 181

189 Mounting partitions mapped with losetup -P 182

190 Removing the losetup -P partition mappings 182

191 Installing afflib with sbotools . 183

192 Downloading the split practice image (wget) 183

193 Viewing the contents of the split image archive 184

194 Extracting the contents of the split image file archive 184

195 Viewing the split image log for our split sample 184

196 Checking the hashes to compare with the log file (using cat and sha1sum) . . 185

197 Re-assembling a split image with cat . 185

198 Using affuse to create a fuse mounted image of the split image 186

343

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

199 Using losetup on our fuse mounted split images 186

200 Mounting a fuse mounted split image partition for analysis 187

201 Unmounting the partition, removing the loop mappings, and unmounting the
fused split files . 187

202 Verifying our hash against previous ewfverify output 189

203 Unmounting the ewf fuse mount . 190

204 Updating ClamAV with freshclam . 191

205 Using clamscan on our NTFS image . 192

206 Downloading the FAT file system sample with wget 194

207 Creating our case output directory . 195

208 Creating an evidence mount point for our FAT image (as root) 195

209 Mounting our FAT image with the loop option 195

210 Basic ls to view a file listing . 196

211 An ls command with the recursive option 197

212 Obtaining file hashes . 198

213 Using find to calculate hashes of every regular file on a volume 198

214 Checking hashes with the -c option to sha1sum 199

215 Including modified time in a file listing . 199

216 Simple file listing with paths using the file command 200

217 Simple directory listing with paths using the file command 200

218 Using the tree command to display a file listing 200

219 Using grep to search for strings in a file listing 200

220 Using find to run file on search results . 201

221 Viewing the results of the find file type command 201

222 Using grep to search for images in our file type output 202

344

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

223 Using the strings command on an executable 203

224 Determining the file type, and then viewing a JPEG file using file and
display . 204

225 Using the grep command with a keyword list 207

226 Viewing our grep search hits with cat . 207

227 Using xxd to view search hits . 207

228 Using tr to translate control characters to newlines 208

229 Using wget to download the practice log files 210

230 Hashing and listing the contents of our practice logs archive 211

231 Extracting our practices logs from the archive 211

232 Viewing the logs with cat . 212

233 Using tac to ’reverse’ the log files . 212

234 Count the number of total lines in the log files with wc 213

235 Count the number of lines in each log file along with the total using wc . . . 213

236 Using awk to print only the month and day (fields 1 and 2) 213

237 Finding unique dates in the logfile with uniq 214

238 Using grep to find a particular date . 214

239 Using grep for strings at the beginning of a line 214

240 Using grep to include unknown number of spaces in the search 215

241 Using grep to find a string . 215

242 Counting our grep hits with wc . 215

243 Using grep and awk to collect more fields . 215

244 Using tabs instead of spaces in our awk output 216

245 Creating a report file on the log analysis . 216

246 Getting a sorted list of IP addresses from the logs 217

345

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

247 Downloading the carving exercise image . 218

248 Viewing the carving exercise image with xxd and less 218

249 Looking for the JPEG header with xxd and grep 219

250 Calculating the decimal offset (header) using bc 219

251 Looking for the JPEG footer with xxd and grep 220

252 Calculating the decimal offset (footer) using bc 220

253 Calculating the size of the image using offsets to header and footer 220

254 Using dd to carve the JPEG with our offset and file size for skip and count . 221

255 Using xv to view the carved image . 221

256 Looking at image partitions with fdisk . 224

257 Using the partition information to carve partitions with dd 224

258 Checking the file system types of our partition images with file 226

259 Searching for the /etc directory in our partition images 226

260 Viewing the fstab file in our mounted partition image 227

261 Reconstructing our able_3 file system . 227

262 Installing TSK with sboinstall . 234

263 Viewing the installed package contents at /var/log/packages 235

264 Obtaining and checking the able2 practice image 236

265 Extracting the archive containing the able2 image 236

266 Using mmls on the able2image . 236

267 Using fsstat on the able2 image . 237

268 Running fls on the root directory of a file system 238

269 Running fls on the root directory of the able2 image 239

270 Using fls on a specific inode . 240

271 Using fls to see a recursive listing of unallocated files 240

346

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

272 Using ffind to find files associated with an inode 242

273 Using istat to gather information about a specific inode 243

274 Listing supported TSK file systems . 243

275 Redirecting the output of icat to a recovered file 244

276 Determining the type of recovered file with the file command 244

277 Listing the contents of the recovered tar archive 245

278 Listing the contents of the directory at inode 11105 using fls 245

279 Using display to show a recovered image directly from icat 246

280 img_stat and mmls on the able3 image . 247

281 Running fsstat on /home (ext4) . 248

282 Running fls on /home (ext4) . 248

283 Running fls recursively on /home (ext4) . 249

284 Running istat and icat on an ALLOCATED file in ext4 249

285 Running istat and icat on an UNALLOCATED file in ext4 250

286 Searching for a keyword in able2.dd with grep 251

287 Viewing the context of a search hit with xxd 252

288 Calculating the sector offset to a search hit with bc 252

289 Using mmls to determine which volume a sector belongs to 253

290 Calculating the byte offset to the volume containing the search hit 253

291 The volume offset of the search hit . 254

292 Determine the number of bytes per block with fsstat 255

293 Calculating the block address that holds the search hit 255

294 Single calculation to determine the data block of the keyword 256

295 Determine the allocation status of the data block with blkstat 256

296 Using ifind to determine a data block’s inode 256

347

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

297 Using istat to explore the inode . 256

298 Using icat to recover data from the blocks in inode 10090 257

299 Saving and hashing the data recovered with icat 257

300 Using ffind to obtain a file name to associate with our data 258

301 Using grep on split images . 259

302 Calculating the file system data block for the ext4 search hit 259

303 Using blkstat to determine the status of the keyword data block 260

304 Using ifind to determine an unallocated block’s inode 260

305 Using blkcat to stream the contents of a data block 260

306 Using dd to correct our recovered data’s size 261

307 Obtaining the offset to our file system with mmls 262

308 Using blkls to extract the unallocated data 263

309 Using grep on our file containing unallocated blocks only 263

310 Finding our block size with fsstat . 264

311 Determining the block address of the search hit in the unallocated blkls image264

312 Calculating the block address of the unallocated unit in able2.dd 264

313 Finding and examining the inode for the unallocated search hit 266

314 Using icat to recover the unallocated data at inode 10090 266

315 Obtaining and extracting the NTFS practice image 267

316 Viewing the partition table in the NTFS image 268

317 fsstat on an NTFS file system . 268

318 fls on NTFS . 269

319 fls on a specific NTFS directory . 269

320 Browsing directories with recursive fls . 270

321 Accessing an individual NTFS attribute with icat 272

348

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

322 Using ewfmount to mount our NTFS EWF image 272

323 Using find on the loop mounted NTFS image 273

324 Using find and grep to narrow the list of files 273

325 Checking the file format and playing the MPEG video 274

326 Using fls to entries with the name jet.mpg 274

327 Using the file command on the default data stream 275

328 Using the file command on the alternate data stream 275

329 Viewing the alternate data stream . 275

330 Fuse mounting the NTFS image for searching 276

331 A string search on the fuse mounted image 276

332 Using tr to make the search results readable 277

333 Finding the NTFS cluster size (block size) 277

334 Calculating the keyword offset in NTFS . 278

335 Finding the MFT entry given the data block 278

336 Determining the data type for the located MFT entry 278

337 Trying to read the MS Office data with less 279

338 Redirecting the MS Office data to a file . 279

339 Using icat and antiword to view the recovered MS Office file 280

340 String search for Uranium-235 . 280

341 Unmounting the fuse mounted EWF image 281

342 Installing bulk_extractor . 281

343 Viewing bulk_extractor’s help . 282

344 Running bulk_extractor, searching for "Uranium-235" 283

345 Viewing bulk_extractor output . 284

346 Viewing the find.txt feature file . 284

349

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

347 Determining the MFT entry and file type of the data in our bulk_extractor

search . 285

348 Viewing the histogram created by the find scanner 286

349 Running bulk_extractor with a keyword file 286

350 Installing docx2txt . 287

351 Viewing the MSXML file with docx2txt . 288

352 Installing scalpel . 289

353 Placing the scalpel configuration file . 290

354 Viewing and editing the scalpel.conf file . 290

355 Reviewing the location of the lolitaz JPG images 292

356 Extracting unallocated space for carving . 293

357 Running scalpel on the able_3 images . 293

358 Viewing the scalpel audit.txt file . 294

359 Adding a new bitmap definition to scalpel.conf 296

360 Re-running scalpel with a new bmp definition 296

361 Installing testdisk for photorec . 298

362 Running photorec . 299

363 Listing the files recovered by photorec . 302

364 Listing the photorec output files . 303

365 Viewing the contents of the recovered tar archive from photorec 304

366 Hashing all the output files from our carving tools 305

367 Installing the fdupes utility . 305

368 Running fdupes to view the duplicated files 306

369 Re-running fdupes, this time with the --delete option 306

370 Finding the MFT entry number of a registry file 308

350

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

371 Using an alternative (fls) method to find the MFT entry of NTUSER.DAT . . . 309

372 Installing libregf . 310

373 Viewing the libregf package contents . 310

374 Mounting the registry hive . 310

375 Listing the registry keys in the NTUSER.DAT mount point 310

376 Changing directory into the target registry key 311

377 Viewing the registry key values . 311

378 Using tr on a single string (.yax) . 312

379 Using a bash for loop to run tr on all the ’files’ 312

380 Viewing the values with xxd . 313

381 De-coding the date with WinTime.py . 313

382 Unmounting the fuse mounted NTUSER.DAT 314

383 Finding the MFT entry of the SAM registry hive 314

384 Extracting the SAM registry hive with icat 314

385 Using regfmount to mount the SAM hive . 314

386 Viewing the accounts in the SAM file . 315

387 Decoding the user accounts in the Users key with a for loop 315

388 Viewing the values for 000003E8 in the SAM file 315

389 Viewing the dates associated with the User account 316

390 Using xxd to view specific values from the registry key 316

391 Passing xxd arguments directly to WinTime.py 317

392 Using a for loop to pass the offset values to xxd 317

393 Installing libscca . 318

394 Looking for prefetch files in the NTFS image 318

395 Extracting the NMAP prefetch file with icat 318

351

Version 4.97 The Law Enforcement and Forensic Examiner’s Introduction to Linux

396 Viewing the prefetch file with xxd . 319

397 Decoding the last execution time in the prefetch file 319

398 Viewing the prefetch file with sccainfo . 319

399 Finding an ’A’ record with host . 321

400 DNS lookup with nslookup . 321

401 DNS lookup with dig . 322

402 dig with the +short option . 322

403 Using curl to find your external IP . 323

404 Finding Mail Exchange records with host and dig 323

405 Google Enterprise Services found with dig 323

406 Using whois . 324

407 Downloading the oui.txt file for MAC lookup 325

408 Using ip to find our MAC address . 326

409 Grepping the oui.txt file for a MAC address 326

410 Cross verification using istat . 329

411 Cross verifying the date using the mounted SAM file and xxd 330

412 Decoding the date recovered from the key (F) with xxd 330

352

	Legalities
	Acknowledgements
	Foreword
	A word about the GNU in "GNU/Linux"
	Why Learn Linux?
	Where are all the GUI Tools?
	The Hands-on Exercises
	Conventions Used in this Document
	Installation
	Distributions
	SLACKWARE and Using this Guide
	Installation Methods
	Slackware Installation Notes
	System Users
	Adding a Normal User
	The Super User [root]

	Desktop Environment
	The Linux Kernel
	Kernel and Hardware Interaction
	Hardware Configuration
	Kernel Modules
	Hotplug devices and UDEV

	Linux Disks, Partitions, and the File System
	Disks
	Device Node Assignment - Looking Closer
	The File System
	Mounting External File Systems
	The mount Command
	The File System Table (/etc/fstab)
	Userspace Mounting

	Basic Linux Commands
	Very Basic Navigation
	Additional Useful Commands

	File Permissions
	Pipes and Redirection
	File Attributes
	Command Line Math
	bc - the Basic Calculator
	Bash Shell - Arithmetic Expansion

	Bash 'globbing'
	Command Review and Hints

	Editing with Vi
	The Joy that is vi
	The vimtutor Tutorial
	vi Command Summary

	The Linux Boot Sequence (Simplified)
	Init vs. Systemd
	Booting the Kernel
	System Initialization
	Runlevel
	Global Startup Scripts
	Service Startup Scripts
	Bash
	Consistent login and non-login shell behavior

	Linux Network Basics
	Network Interfaces
	Ethernet Adapter [ethX]
	Wireless Adapter [wlanX]
	Loopback Interface [lo]
	Persistent Interface Naming

	Network Configuration
	Initial Network Configuration

	Finding Yourself on the Network
	What is my IP?

	Reviewing Network Connections and Ports

	Configuring a Forensic Workstation
	Securing the Workstation
	Configuring Startup Services
	Host Based Access Control
	Host Based Firewall with iptables

	Updating the Operating System
	Slackware's pkgtools
	slackpkg for automated updates

	Installing and Updating "External" Software
	Compiling From Source
	Using Distribution Packages
	Building Packages with SlackBuilds
	Using the automated package tool sbotools

	Linux and Evidence Handling
	Evidence Acquisition
	Analysis Organization
	Write Blocking
	Examining Physical Media Information
	Hashing Media
	Collecting a Forensic Image with dd
	dd and Splitting Images

	Alternative Imaging Tools
	dc3dd
	libewf and ewfacquire
	Media Errors - ddrescue

	Imaging Over the Wire
	Over the wire - dd
	Over the Wire - dc3dd
	Over the Wire - ewfacquirestream

	Compression - Local and Over the Wire
	Compression on the Fly with dd

	Preparing a disk for the Suspect Image - Wiping
	Final Words on Imaging
	Mounting Evidence
	Structure of the Image
	Identifying File Systems
	The Loop Device
	Loop option to the mount command
	losetup
	Mounting Full Disk Images with losetup
	Mounting Multi Partition Images with losetup -P
	Mounting Split Image Files with affuse
	Mounting EWF files with ewfmount

	Basic Analysis
	Anti Virus - Scanning the Evidence with clamav
	Basic Data Review on the Command Line
	Making a List of File Types
	Viewing Files
	Searching All Areas of the Forensic Image for Text

	Advanced (Beginner) Forensics
	Manipulating and Parsing Files
	Fun with dd
	Data Carving with dd
	Carving Partitions with dd
	Reconstructing a Subject File System (Linux)

	Advanced Analysis Tools
	The Layer Approach to Analysis
	The Sleuth Kit
	Sleuth Kit Installation

	Sleuth Kit Exercises
	Sleuth Kit Exercise 1A: Deleted File Identification and Recovery (ext2)
	Sleuth Kit Exercise 1B: Deleted File Identification and Recovery (ext4)
	Sleuth Kit Exercise 2A: Physical String Search & Allocation Status (ext2)
	Sleuth Kit Exercise 2B: Physical String Search & Allocation Status (ext4)
	Sleuth Kit Exercise 3: Unallocated Extraction & Examination
	SleuthKit Exercise 4: NTFS Examination - File Analysis
	Sleuth Kit Exercise 5: NTFS Examination of ADS
	Sleuth Kit Exercise 6: Physical String Search & Allocation Status (NTFS)

	bulkextractor - comprehensive searching
	Physical Carving
	scalpel
	photorec
	Comparing and De-duplicating Carve Output

	Application Analysis
	Registry Parsing Exercise 1: UserAssist
	Registry Parsing Exercise 2: SAM and Accounts
	Application Analysis: prefetch

	Basic Network Investigation Tools
	IP Address Lookup
	Mail Exchange Lookup

	Whois data
	MAC Address Lookup

	Integrating Linux with Your Work
	Conclusion
	Linux Support
	Places to go for Support

	List of Figures
	List of Command Examples

